{"title":"Evaluation of mine water quality based on the PCA–PSO–BP model","authors":"Jiaqi Wang, Yanli Huang","doi":"10.2166/wcc.2023.604","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwc-d-23-00504gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwc-d-23-00504gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry.</p>","PeriodicalId":510893,"journal":{"name":"Journal of Water & Climate Change","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water & Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
View largeDownload slide
View largeDownload slide
Close modal
To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry.