{"title":"Energy Aware Cluster Based Routing Algorithm for Optimal Routing and Fault Tolerance in Wireless Sensor Networks","authors":"Sateesh Gorikapudi, Hari Kishan Kondaveeti","doi":"10.1007/s10922-024-09806-y","DOIUrl":null,"url":null,"abstract":"<p>In order to prevent the overloading, the routing algorithm aids in building productive paths both within and between clusters. When sending information from the source Internet of Things (IoT) device to a Base Station (BS), not all IoT devices are utilized in the path. We introduced an energy aware cluster-based routing in this paper, in which Improved Fuzzy C-means (IFCM) model plays a major role in clustering initially. Meanwhile, the clustering procedure considers the factors like energy and distance. Subsequent to the clustering process, optimal routing will be takes place by a new hybrid optimization algorithm named Custom Honey Badger and Coot Optimization (CHBCO) that combines the models like Honey badger optimization and Coot optimization model, respectively. For routing, the model considers the constraints like Energy as well as link quality. Also, this model establishes the fault tolerance method, which ensures that the network will continue to operate normally even in the situation of a Cluster Head (CH) failure. During this, the cluster members switch to another CH. The performance of proposed CHBCO based routing model is compared over existing models with respect to convergence rate, distance evaluation, energy, alive nodes, distance, normalized energy and link quality under various scenarios.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"62 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09806-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to prevent the overloading, the routing algorithm aids in building productive paths both within and between clusters. When sending information from the source Internet of Things (IoT) device to a Base Station (BS), not all IoT devices are utilized in the path. We introduced an energy aware cluster-based routing in this paper, in which Improved Fuzzy C-means (IFCM) model plays a major role in clustering initially. Meanwhile, the clustering procedure considers the factors like energy and distance. Subsequent to the clustering process, optimal routing will be takes place by a new hybrid optimization algorithm named Custom Honey Badger and Coot Optimization (CHBCO) that combines the models like Honey badger optimization and Coot optimization model, respectively. For routing, the model considers the constraints like Energy as well as link quality. Also, this model establishes the fault tolerance method, which ensures that the network will continue to operate normally even in the situation of a Cluster Head (CH) failure. During this, the cluster members switch to another CH. The performance of proposed CHBCO based routing model is compared over existing models with respect to convergence rate, distance evaluation, energy, alive nodes, distance, normalized energy and link quality under various scenarios.
期刊介绍:
Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.