Convergence and Complexity of an Adaptive Planewave Method for Eigenvalue Computations

IF 1.5 4区 工程技术 Q2 MATHEMATICS, APPLIED
Xiaoying Dai,Yan Pan,Bin Yang, Aihui Zhou
{"title":"Convergence and Complexity of an Adaptive Planewave Method for Eigenvalue Computations","authors":"Xiaoying Dai,Yan Pan,Bin Yang, Aihui Zhou","doi":"10.4208/aamm.oa-2023-0099","DOIUrl":null,"url":null,"abstract":"In this paper, we study the adaptive planewave discretization for a cluster\nof eigenvalues of second-order elliptic partial differential equations. We first design\nan a posteriori error estimator and prove both the upper and lower bounds. Based on\nthe a posteriori error estimator, we propose an adaptive planewave method. We then\nprove that the adaptive planewave approximations have the linear convergence rate\nand quasi-optimal complexity","PeriodicalId":54384,"journal":{"name":"Advances in Applied Mathematics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4208/aamm.oa-2023-0099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the adaptive planewave discretization for a cluster of eigenvalues of second-order elliptic partial differential equations. We first design an a posteriori error estimator and prove both the upper and lower bounds. Based on the a posteriori error estimator, we propose an adaptive planewave method. We then prove that the adaptive planewave approximations have the linear convergence rate and quasi-optimal complexity
用于特征值计算的自适应平面波方法的收敛性和复杂性
本文研究了二阶椭圆偏微分方程特征值群的自适应平面波离散化。我们首先设计了一个后验误差估计器,并证明了上界和下界。在后验误差估计器的基础上,我们提出了一种自适应平面波方法。然后,我们证明了自适应平面波近似具有线性收敛速率和准最优复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics and Mechanics
Advances in Applied Mathematics and Mechanics MATHEMATICS, APPLIED-MECHANICS
CiteScore
2.60
自引率
7.10%
发文量
65
审稿时长
6 months
期刊介绍: Advances in Applied Mathematics and Mechanics (AAMM) provides a fast communication platform among researchers using mathematics as a tool for solving problems in mechanics and engineering, with particular emphasis in the integration of theory and applications. To cover as wide audiences as possible, abstract or axiomatic mathematics is not encouraged. Innovative numerical analysis, numerical methods, and interdisciplinary applications are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信