{"title":"Diameter estimates for surfaces in conformally flat spaces","authors":"Marco Flaim, Christian Scharrer","doi":"10.1007/s00229-024-01539-1","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to give an upper bound for the intrinsic diameter of a surface with boundary immersed in a conformally flat three dimensional Riemannian manifold in terms of the integral of the mean curvature and of the length of its boundary. Of particular interest is the application of the inequality to minimal surfaces in the three-sphere and in the hyperbolic space. Here the result implies an a priori estimate for connected solutions of Plateau’s problem, as well as a necessary condition on the boundary data for the existence of such solutions. The proof follows a construction of Miura and uses a diameter bound for closed surfaces obtained by Topping and Wu–Zheng.</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"18 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01539-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to give an upper bound for the intrinsic diameter of a surface with boundary immersed in a conformally flat three dimensional Riemannian manifold in terms of the integral of the mean curvature and of the length of its boundary. Of particular interest is the application of the inequality to minimal surfaces in the three-sphere and in the hyperbolic space. Here the result implies an a priori estimate for connected solutions of Plateau’s problem, as well as a necessary condition on the boundary data for the existence of such solutions. The proof follows a construction of Miura and uses a diameter bound for closed surfaces obtained by Topping and Wu–Zheng.
期刊介绍:
manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.