Diameter estimates for surfaces in conformally flat spaces

Pub Date : 2024-03-01 DOI:10.1007/s00229-024-01539-1
Marco Flaim, Christian Scharrer
{"title":"Diameter estimates for surfaces in conformally flat spaces","authors":"Marco Flaim, Christian Scharrer","doi":"10.1007/s00229-024-01539-1","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to give an upper bound for the intrinsic diameter of a surface with boundary immersed in a conformally flat three dimensional Riemannian manifold in terms of the integral of the mean curvature and of the length of its boundary. Of particular interest is the application of the inequality to minimal surfaces in the three-sphere and in the hyperbolic space. Here the result implies an a priori estimate for connected solutions of Plateau’s problem, as well as a necessary condition on the boundary data for the existence of such solutions. The proof follows a construction of Miura and uses a diameter bound for closed surfaces obtained by Topping and Wu–Zheng.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01539-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to give an upper bound for the intrinsic diameter of a surface with boundary immersed in a conformally flat three dimensional Riemannian manifold in terms of the integral of the mean curvature and of the length of its boundary. Of particular interest is the application of the inequality to minimal surfaces in the three-sphere and in the hyperbolic space. Here the result implies an a priori estimate for connected solutions of Plateau’s problem, as well as a necessary condition on the boundary data for the existence of such solutions. The proof follows a construction of Miura and uses a diameter bound for closed surfaces obtained by Topping and Wu–Zheng.

Abstract Image

分享
查看原文
共形平面空间中曲面的直径估计值
本文旨在根据平均曲率积分和边界长度积分,给出浸没在保角平坦三维黎曼流形中的有边界曲面的本征直径上限。特别令人感兴趣的是将不等式应用于三球面和双曲空间中的最小曲面。在这里,该结果意味着对普拉托问题的连通解的先验估计,以及这种解存在的边界数据的必要条件。证明沿用了三浦的构造,并使用了托平与吴征获得的封闭曲面的直径约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信