Upper bounds for the critical values of homology classes of loops

IF 0.5 4区 数学 Q3 MATHEMATICS
Hans-Bert Rademacher
{"title":"Upper bounds for the critical values of homology classes of loops","authors":"Hans-Bert Rademacher","doi":"10.1007/s00229-024-01541-7","DOIUrl":null,"url":null,"abstract":"<p>In this short note we discuss upper bounds for the critical values of homology classes in the based and free loop space of compact manifolds carrying a Riemannian or Finsler metric of positive Ricci curvature. In particular it follows that a shortest closed geodesic on a compact and simply-connected <i>n</i>-dimensional manifold of positive Ricci curvature <span>\\(\\text {Ric}\\ge n-1\\)</span> has length <span>\\(\\le n \\pi .\\)</span> This improves the bound <span>\\(8\\pi (n-1)\\)</span> given by Rotman (Positive Ricci curvature and the length of a shortest periodic geodesic. arXiv:2203.09492, 2022).</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01541-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this short note we discuss upper bounds for the critical values of homology classes in the based and free loop space of compact manifolds carrying a Riemannian or Finsler metric of positive Ricci curvature. In particular it follows that a shortest closed geodesic on a compact and simply-connected n-dimensional manifold of positive Ricci curvature \(\text {Ric}\ge n-1\) has length \(\le n \pi .\) This improves the bound \(8\pi (n-1)\) given by Rotman (Positive Ricci curvature and the length of a shortest periodic geodesic. arXiv:2203.09492, 2022).

循环同构类临界值的上限
在这篇短文中,我们讨论了携带正利玛窦曲率的黎曼或芬斯勒度量的紧凑流形的基于和自由环空间中的同调类临界值的上限。这改进了罗特曼 (Positive Ricci curvature and the length of a shortest periodic geodesic. arXiv:2203.09492, 2022) 给出的边界 \(8\pi (n-1)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信