Asmita Pal, Keerthana Desai, Rahul Chatterjee, Joshua San Miguel
{"title":"Camouflage: Utility-Aware Obfuscation for Accurate Simulation of Sensitive Program Traces","authors":"Asmita Pal, Keerthana Desai, Rahul Chatterjee, Joshua San Miguel","doi":"10.1145/3650110","DOIUrl":null,"url":null,"abstract":"<p>Trace-based simulation is a widely used methodology for system design exploration. It relies on realistic traces that represent a range of behaviors necessary to be evaluated, containing a lot of information about the application, its inputs and the underlying system on which it was generated. Consequently, generating traces from real-world executions risk leakage of sensitive information. To prevent this, traces can be obfuscated before release. However, this can undermine their ideal utility, i.e., how realistically a program behavior was captured. To address this, we propose Camouflage, a novel obfuscation framework, designed with awareness of the necessary architectural properties required to preserve <i>trace utility</i>, while ensuring secrecy of the inputs used to generate the trace. Focusing on memory access traces, our extensive evaluation on various benchmarks shows that camouflaged traces preserve the performance measurements of the original execution, with an average <i>τ</i> correlation of 0.66. We model input secrecy as an input indistinguishability problem and show that the average security loss is 7.8%, which is better than traces generated from the state-of-the-art.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"25 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650110","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Trace-based simulation is a widely used methodology for system design exploration. It relies on realistic traces that represent a range of behaviors necessary to be evaluated, containing a lot of information about the application, its inputs and the underlying system on which it was generated. Consequently, generating traces from real-world executions risk leakage of sensitive information. To prevent this, traces can be obfuscated before release. However, this can undermine their ideal utility, i.e., how realistically a program behavior was captured. To address this, we propose Camouflage, a novel obfuscation framework, designed with awareness of the necessary architectural properties required to preserve trace utility, while ensuring secrecy of the inputs used to generate the trace. Focusing on memory access traces, our extensive evaluation on various benchmarks shows that camouflaged traces preserve the performance measurements of the original execution, with an average τ correlation of 0.66. We model input secrecy as an input indistinguishability problem and show that the average security loss is 7.8%, which is better than traces generated from the state-of-the-art.
期刊介绍:
ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.