{"title":"A Gauss–Newton method for mixed least squares-total least squares problems","authors":"Qiaohua Liu, Shan Wang, Yimin Wei","doi":"10.1007/s10092-024-00568-2","DOIUrl":null,"url":null,"abstract":"<p>The approximate linear equation <span>\\(Ax\\approx b\\)</span> with some columns of <i>A</i> error-free can be solved via mixed least squares-total least squares (MTLS) model by minimizing a nonlinear function. This paper is devoted to the Gauss–Newton iteration for the MTLS problem. With an appropriately chosen initial vector, each iteration step of the standard Gauss–Newton method requires to solve a smaller-size least squares problem, in which the QR of the coefficient matrix needs a rank-one modification. To improve the convergence, we devise a relaxed Gauss–Newton (RGN) method by introducing a relaxation factor and provide the convergence results as well. The convergence is shown to be closely related to the ratio of the square of subspace-restricted singular values of [<i>A</i>, <i>b</i>]. The RGN can also be modified to solve the total least squares (TLS) problem. Applying the RGN method to a Bursa–Wolf model in parameter estimation, numerical results show that the RGN-based MTLS method behaves much better than the RGN-based TLS method. Theoretical convergence properties of the RGN-MTLS algorithm are also illustrated by numerical tests.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00568-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The approximate linear equation \(Ax\approx b\) with some columns of A error-free can be solved via mixed least squares-total least squares (MTLS) model by minimizing a nonlinear function. This paper is devoted to the Gauss–Newton iteration for the MTLS problem. With an appropriately chosen initial vector, each iteration step of the standard Gauss–Newton method requires to solve a smaller-size least squares problem, in which the QR of the coefficient matrix needs a rank-one modification. To improve the convergence, we devise a relaxed Gauss–Newton (RGN) method by introducing a relaxation factor and provide the convergence results as well. The convergence is shown to be closely related to the ratio of the square of subspace-restricted singular values of [A, b]. The RGN can also be modified to solve the total least squares (TLS) problem. Applying the RGN method to a Bursa–Wolf model in parameter estimation, numerical results show that the RGN-based MTLS method behaves much better than the RGN-based TLS method. Theoretical convergence properties of the RGN-MTLS algorithm are also illustrated by numerical tests.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.