Tianshi Wang, Fengling Li, Lei Zhu, Jingjing Li, Zheng Zhang, Heng Tao Shen
{"title":"Invisible Black-Box Backdoor Attack against Deep Cross-Modal Hashing Retrieval","authors":"Tianshi Wang, Fengling Li, Lei Zhu, Jingjing Li, Zheng Zhang, Heng Tao Shen","doi":"10.1145/3650205","DOIUrl":null,"url":null,"abstract":"<p>Deep cross-modal hashing has promoted the field of multi-modal retrieval due to its excellent efficiency and storage, but its vulnerability to backdoor attacks is rarely studied. Notably, current deep cross-modal hashing methods inevitably require large-scale training data, resulting in poisoned samples with imperceptible triggers that can easily be camouflaged into the training data to bury backdoors in the victim model. Nevertheless, existing backdoor attacks focus on the uni-modal vision domain, while the multi-modal gap and hash quantization weaken their attack performance. In addressing the aforementioned challenges, we undertake an invisible black-box backdoor attack against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first attempt in this research field. Specifically, we develop a flexible trigger generator to generate the attacker’s specified triggers, which learns the sample semantics of the non-poisoned modality to bridge the cross-modal attack gap. Then, we devise an input-aware injection network, which embeds the generated triggers into benign samples in the form of sample-specific stealth and realizes cross-modal semantic interaction between triggers and poisoned samples. Owing to the knowledge-agnostic of victim models, we enable any cross-modal hashing knockoff to facilitate the black-box backdoor attack and alleviate the attack weakening of hash quantization. Moreover, we propose a confusing perturbation and mask strategy to induce the high-performance victim models to focus on imperceptible triggers in poisoned samples. Extensive experiments on benchmark datasets demonstrate that our method has a state-of-the-art attack performance against deep cross-modal hashing retrieval. Besides, we investigate the influences of transferable attacks, few-shot poisoning, multi-modal poisoning, perceptibility, and potential defenses on backdoor attacks. Our codes and datasets are available at https://github.com/tswang0116/IB3A.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650205","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep cross-modal hashing has promoted the field of multi-modal retrieval due to its excellent efficiency and storage, but its vulnerability to backdoor attacks is rarely studied. Notably, current deep cross-modal hashing methods inevitably require large-scale training data, resulting in poisoned samples with imperceptible triggers that can easily be camouflaged into the training data to bury backdoors in the victim model. Nevertheless, existing backdoor attacks focus on the uni-modal vision domain, while the multi-modal gap and hash quantization weaken their attack performance. In addressing the aforementioned challenges, we undertake an invisible black-box backdoor attack against deep cross-modal hashing retrieval in this paper. To the best of our knowledge, this is the first attempt in this research field. Specifically, we develop a flexible trigger generator to generate the attacker’s specified triggers, which learns the sample semantics of the non-poisoned modality to bridge the cross-modal attack gap. Then, we devise an input-aware injection network, which embeds the generated triggers into benign samples in the form of sample-specific stealth and realizes cross-modal semantic interaction between triggers and poisoned samples. Owing to the knowledge-agnostic of victim models, we enable any cross-modal hashing knockoff to facilitate the black-box backdoor attack and alleviate the attack weakening of hash quantization. Moreover, we propose a confusing perturbation and mask strategy to induce the high-performance victim models to focus on imperceptible triggers in poisoned samples. Extensive experiments on benchmark datasets demonstrate that our method has a state-of-the-art attack performance against deep cross-modal hashing retrieval. Besides, we investigate the influences of transferable attacks, few-shot poisoning, multi-modal poisoning, perceptibility, and potential defenses on backdoor attacks. Our codes and datasets are available at https://github.com/tswang0116/IB3A.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.