Bi-primitive 2-arc-transitive bi-Cayley graphs

Pub Date : 2024-03-02 DOI:10.1007/s10801-024-01297-z
Jing Jian Li, Xiao Qian Zhang, Jin-Xin Zhou
{"title":"Bi-primitive 2-arc-transitive bi-Cayley graphs","authors":"Jing Jian Li, Xiao Qian Zhang, Jin-Xin Zhou","doi":"10.1007/s10801-024-01297-z","DOIUrl":null,"url":null,"abstract":"<p>A bipartite graph <span>\\(\\Gamma \\)</span> is a <i>bi-Cayley graph</i> over a group <i>H</i> if <span>\\(H\\leqslant \\textrm{Aut}\\Gamma \\)</span> acts regularly on each part of <span>\\(\\Gamma \\)</span>. A bi-Cayley graph <span>\\(\\Gamma \\)</span> is said to be a <i>normal bi-Cayley graph over H</i> if <span>\\(H\\unlhd \\textrm{Aut}\\Gamma \\)</span>, and <i>bi-primitive</i> if the bipartition preserving subgroup of <span>\\(\\textrm{Aut}\\Gamma \\)</span> acts primitively on each part of <span>\\(\\Gamma \\)</span>. In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01297-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A bipartite graph \(\Gamma \) is a bi-Cayley graph over a group H if \(H\leqslant \textrm{Aut}\Gamma \) acts regularly on each part of \(\Gamma \). A bi-Cayley graph \(\Gamma \) is said to be a normal bi-Cayley graph over H if \(H\unlhd \textrm{Aut}\Gamma \), and bi-primitive if the bipartition preserving subgroup of \(\textrm{Aut}\Gamma \) acts primitively on each part of \(\Gamma \). In this paper, a classification is given for 2-arc-transitive bi-Cayley graphs which are bi-primitive and non-normal.

分享
查看原文
双元 2-弧-直角双 Cayley 图形
如果 \(H\leqslant \textrm{Aut}\Gamma \)有规律地作用于 \(\Gamma \)的每一部分,那么一个双分图 \(\Gamma \)就是一个在群 H 上的双凯利图。如果 \(H\unlhd \textrm{Aut}\Gamma \)的双分区保留子群原始地作用于 \(\textrm{Aut}\Gamma \)的每一部分,则称\(\unlhd \textrm{Aut}\Gamma \)为H上的正常双凯利图;如果 \(\textrm{Aut}\Gamma \)的双分区保留子群原始地作用于 \(\textrm{Aut}\Gamma \)的每一部分,则称\(\unlhd \textrm{Aut}\Gamma \)为H上的正常双凯利图。本文给出了双正则和非正则的 2-弧传递双凯利图的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信