Ensemble of temporal Transformers for financial time series

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kenniy Olorunnimbe, Herna Viktor
{"title":"Ensemble of temporal Transformers for financial time series","authors":"Kenniy Olorunnimbe, Herna Viktor","doi":"10.1007/s10844-024-00851-2","DOIUrl":null,"url":null,"abstract":"<p>The accuracy of price forecasts is important for financial market trading strategies and portfolio management. Compared to traditional models such as ARIMA and other state-of-the-art deep learning techniques, temporal Transformers with similarity embedding perform better for multi-horizon forecasts in financial time series, as they account for the conditional heteroscedasticity inherent in financial data. Despite this, the methods employed in generating these forecasts must be optimized to achieve the highest possible level of precision. One approach that has been shown to improve the accuracy of machine learning models is ensemble techniques. To this end, we present an ensemble approach that efficiently utilizes the available data over an extended timeframe. Our ensemble combines multiple temporal Transformer models learned within sliding windows, thereby making optimal use of the data. As combination methods, along with an averaging approach, we also introduced a stacking meta-learner that leverages a quantile estimator to determine the optimal weights for combining the base models of smaller windows. By decomposing the constituent time series of an extended timeframe, we optimize the utilization of the series for financial deep learning. This simplifies the training process of a temporal Transformer model over an extended time series while achieving better performance, particularly when accounting for the non-constant variance of financial time series. Our experiments, conducted across volatile and non-volatile extrapolation periods, using 20 companies from the Dow Jones Industrial Average show more than 40% and 60% improvement in predictive performance compared to the baseline temporal Transformer.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00851-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of price forecasts is important for financial market trading strategies and portfolio management. Compared to traditional models such as ARIMA and other state-of-the-art deep learning techniques, temporal Transformers with similarity embedding perform better for multi-horizon forecasts in financial time series, as they account for the conditional heteroscedasticity inherent in financial data. Despite this, the methods employed in generating these forecasts must be optimized to achieve the highest possible level of precision. One approach that has been shown to improve the accuracy of machine learning models is ensemble techniques. To this end, we present an ensemble approach that efficiently utilizes the available data over an extended timeframe. Our ensemble combines multiple temporal Transformer models learned within sliding windows, thereby making optimal use of the data. As combination methods, along with an averaging approach, we also introduced a stacking meta-learner that leverages a quantile estimator to determine the optimal weights for combining the base models of smaller windows. By decomposing the constituent time series of an extended timeframe, we optimize the utilization of the series for financial deep learning. This simplifies the training process of a temporal Transformer model over an extended time series while achieving better performance, particularly when accounting for the non-constant variance of financial time series. Our experiments, conducted across volatile and non-volatile extrapolation periods, using 20 companies from the Dow Jones Industrial Average show more than 40% and 60% improvement in predictive performance compared to the baseline temporal Transformer.

Abstract Image

金融时间序列的时间变换器集合
价格预测的准确性对于金融市场交易策略和投资组合管理非常重要。与 ARIMA 等传统模型和其他最先进的深度学习技术相比,具有相似性嵌入的时空变换器在金融时间序列的多视距预测方面表现更好,因为它们考虑到了金融数据固有的条件异方差性。尽管如此,生成这些预测的方法必须进行优化,以达到尽可能高的精度。已证明能提高机器学习模型准确性的一种方法是集合技术。为此,我们提出了一种集合方法,可有效利用扩展时间范围内的可用数据。我们的集合方法结合了在滑动窗口内学习的多个时间 Transformer 模型,从而优化了数据的使用。作为组合方法,除了平均方法,我们还引入了堆叠元学习器,利用量子估计器来确定组合较小窗口基础模型的最佳权重。通过分解扩展时间框架的组成时间序列,我们优化了金融深度学习对序列的利用。这简化了扩展时间序列上时序变换器模型的训练过程,同时实现了更好的性能,尤其是在考虑到金融时间序列的非恒定方差时。我们使用道琼斯工业平均指数中的 20 家公司,在波动和非波动外推期进行了实验,结果表明,与基线时空变换器相比,预测性能分别提高了 40% 和 60% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信