{"title":"Computationally efficient stress reconstruction from full-field strain measurements","authors":"Miroslav Halilovič, Bojan Starman, Sam Coppieters","doi":"10.1007/s00466-024-02458-4","DOIUrl":null,"url":null,"abstract":"<p>Stress reconstruction based on experimentally acquired full-field strain measurements is computationally expensive when using conventional implicit stress integration algorithms. The computational burden associated with repetitive stress reconstruction is particularly relevant when inversely characterizing plastic material behaviour via inverse methods, like the nonlinear Virtual Fields Method (VFM). Spatial and temporal down-sampling of the available full-field strain data is often used to mitigate the computational effort. However, for metals subjected to non-linear strain paths, temporal down-sampling of the strain fields leads to erroneous stress states biasing the identification accuracy of the inverse method. Hence, a significant speedup factor of the stress integration algorithm is required to fully exploit the experimental data acquired by Digital Image Correlation (DIC). To this end, we propose an explicit stress integration algorithm that is independent on the number of images (i.e. strain fields) taken into account in the stress reconstruction. Theoretically, the proposed method eliminates the need for spatial and temporal down-sampling of the experimental full-field data used in the nonlinear VFM. Finally, the proposed algorithm is also beneficial in the emerging field of real-time DIC applications.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"79 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02458-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Stress reconstruction based on experimentally acquired full-field strain measurements is computationally expensive when using conventional implicit stress integration algorithms. The computational burden associated with repetitive stress reconstruction is particularly relevant when inversely characterizing plastic material behaviour via inverse methods, like the nonlinear Virtual Fields Method (VFM). Spatial and temporal down-sampling of the available full-field strain data is often used to mitigate the computational effort. However, for metals subjected to non-linear strain paths, temporal down-sampling of the strain fields leads to erroneous stress states biasing the identification accuracy of the inverse method. Hence, a significant speedup factor of the stress integration algorithm is required to fully exploit the experimental data acquired by Digital Image Correlation (DIC). To this end, we propose an explicit stress integration algorithm that is independent on the number of images (i.e. strain fields) taken into account in the stress reconstruction. Theoretically, the proposed method eliminates the need for spatial and temporal down-sampling of the experimental full-field data used in the nonlinear VFM. Finally, the proposed algorithm is also beneficial in the emerging field of real-time DIC applications.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.