{"title":"A Tutorial for Deception Detection Analysis or: How I Learned to Stop Aggregating Veracity Judgments and Embraced Signal Detection Theory Mixed Models","authors":"Mircea Zloteanu, Matti Vuorre","doi":"10.1007/s10919-024-00456-x","DOIUrl":null,"url":null,"abstract":"<p>Historically, deception detection research has relied on factorial analyses of response accuracy to make inferences. However, this practice overlooks important sources of variability resulting in potentially misleading estimates and may conflate response bias with participants’ underlying sensitivity to detect lies from truths. We showcase an alternative approach using a signal detection theory (SDT) with generalized linear mixed models framework to address these limitations. This SDT approach incorporates individual differences from both judges and senders, which are a principal source of spurious findings in deception research. By avoiding data transformations and aggregations, this methodology outperforms traditional methods and provides more informative and reliable effect estimates. This well-established framework offers researchers a powerful tool for analyzing deception data and advances our understanding of veracity judgments. All code and data are openly available.</p>","PeriodicalId":47747,"journal":{"name":"Journal of Nonverbal Behavior","volume":"53 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonverbal Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10919-024-00456-x","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, SOCIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Historically, deception detection research has relied on factorial analyses of response accuracy to make inferences. However, this practice overlooks important sources of variability resulting in potentially misleading estimates and may conflate response bias with participants’ underlying sensitivity to detect lies from truths. We showcase an alternative approach using a signal detection theory (SDT) with generalized linear mixed models framework to address these limitations. This SDT approach incorporates individual differences from both judges and senders, which are a principal source of spurious findings in deception research. By avoiding data transformations and aggregations, this methodology outperforms traditional methods and provides more informative and reliable effect estimates. This well-established framework offers researchers a powerful tool for analyzing deception data and advances our understanding of veracity judgments. All code and data are openly available.
期刊介绍:
Journal of Nonverbal Behavior presents peer-reviewed original theoretical and empirical research on all major areas of nonverbal behavior. Specific topics include paralanguage, proxemics, facial expressions, eye contact, face-to-face interaction, and nonverbal emotional expression, as well as other subjects which contribute to the scientific understanding of nonverbal processes and behavior.