Energy loss mechanism of a full tubular pump under reverse power generation conditions using entropy production theory

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Lijian Shi, Yiyu Chen, Xianlei Yu, Yi Han, Yao Chai, Muzi Xue
{"title":"Energy loss mechanism of a full tubular pump under reverse power generation conditions using entropy production theory","authors":"Lijian Shi, Yiyu Chen, Xianlei Yu, Yi Han, Yao Chai, Muzi Xue","doi":"10.1177/09576509241236825","DOIUrl":null,"url":null,"abstract":"This paper investigates the energy dissipation mechanism of the internal flow field of the full tubular pump during reverse power generation and pump conditions, utilizing CFD and model test methods to research the device’s hydraulic characteristics, internal flow field and entropy production. The results indicate that the reverse power generation and pump conditions’ performance curves have opposite trends. Under PRPG conditions, the flow uniformity and weighted average angle of the impeller inlet flow field are smaller and the inlet flow field is poor. The stator-rotor gap flow under PRPG conditions increases with the increase in total flow, the gap flow under the design flow is 2.88 L/s, and the torque is 7.35 N·m. Under the PRPG condition, the turbulent and wall entropy production ratio increases gradually with the flow increase. Under the design flow rate, the entropy production rate of the impeller is 55.07%, and the entropy production rate of the impeller is the largest among the components under different flow rates. The entropy production of the outlet channel rises significantly with the flow rate. The research results of this paper provide a theoretical basis for the distribution of energy loss in reverse power generation of the full tubular pump.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241236825","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the energy dissipation mechanism of the internal flow field of the full tubular pump during reverse power generation and pump conditions, utilizing CFD and model test methods to research the device’s hydraulic characteristics, internal flow field and entropy production. The results indicate that the reverse power generation and pump conditions’ performance curves have opposite trends. Under PRPG conditions, the flow uniformity and weighted average angle of the impeller inlet flow field are smaller and the inlet flow field is poor. The stator-rotor gap flow under PRPG conditions increases with the increase in total flow, the gap flow under the design flow is 2.88 L/s, and the torque is 7.35 N·m. Under the PRPG condition, the turbulent and wall entropy production ratio increases gradually with the flow increase. Under the design flow rate, the entropy production rate of the impeller is 55.07%, and the entropy production rate of the impeller is the largest among the components under different flow rates. The entropy production of the outlet channel rises significantly with the flow rate. The research results of this paper provide a theoretical basis for the distribution of energy loss in reverse power generation of the full tubular pump.
利用熵产生理论研究反向发电条件下全管式泵的能量损失机理
本文研究了反向发电和泵工况下全管式泵内部流场的耗能机理,利用 CFD 和模型试验方法研究了装置的水力特性、内部流场和熵产。结果表明,反向发电工况和泵工况的性能曲线趋势相反。在 PRPG 工况下,叶轮入口流场的流动均匀度和加权平均角较小,入口流场较差。PRPG 工况下的定转子间隙流量随着总流量的增加而增加,设计流量下的间隙流量为 2.88 L/s,扭矩为 7.35 N-m。在 PRPG 条件下,湍流和壁面熵产率随流量增加而逐渐增大。在设计流量下,叶轮的熵产率为 55.07%,是不同流量下各部件中熵产率最大的。出口通道的熵产生率随流速的增加而显著上升。本文的研究成果为全管式泵反向发电的能量损失分布提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信