Developing the Models of Acoustic-Gravity Waves in the Upper Atmosphere (Review)

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, Y. O. Klymenko, I. T. Zhuk
{"title":"Developing the Models of Acoustic-Gravity Waves in the Upper Atmosphere (Review)","authors":"O. K. Cheremnykh,&nbsp;A. K. Fedorenko,&nbsp;E. I. Kryuchkov,&nbsp;Y. O. Klymenko,&nbsp;I. T. Zhuk","doi":"10.3103/S0884591324010021","DOIUrl":null,"url":null,"abstract":"<p>The results of the authors’ studies of acoustic-gravity waves (AGW) in the upper Earth’s atmosphere for recent years are presented. The work was generally aimed at the development of theoretical AGW models taking into account the real atmosphere properties and the verification of these models by spacecraft measurement data. The possibility of the existence of new evanescent acoustic-gravity wave types was theoretically shown; in particular, a previously unknown inelastic mode and a family of evanescent pseudo-modes were revealed. The possibility of observing evanescent modes on the Sun and in the Earth’s atmosphere was analyzed. The specific features of the propagation of acoustic-gravity waves at the interface between two isothermal half-spaces with different temperatures depending on their spectral parameters and the temperature jump magnitude at the interface were studied. The peculiarities of the interaction of acoustic-gravity waves with spatially inhomogeneous atmospheric flows were also investigated. The observed effects resulting from such interaction were analyzed to reveal the wave propagation azimuths, the change in their amplitudes, and the effect of blocking in the counterflow. The effect of vertical nonisothermicity on the propagation of acoustic-gravity waves, including the modification of acoustic and gravitational regions depending on the temperature, was studied. Based on the modified Navier-Stokes and heat-transfer equations, the effect of attenuation on the propagation of acoustic-gravity waves in the atmosphere was analyzed. The specific features of the viscous attenuation of different evanescent AGW types in the atmosphere were considered. The rotation of the atmosphere was shown to result in the modification of the continuous spectrum of evanescent AGWs with frequencies exceeding the Coriolis parameter.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"1 - 14"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591324010021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The results of the authors’ studies of acoustic-gravity waves (AGW) in the upper Earth’s atmosphere for recent years are presented. The work was generally aimed at the development of theoretical AGW models taking into account the real atmosphere properties and the verification of these models by spacecraft measurement data. The possibility of the existence of new evanescent acoustic-gravity wave types was theoretically shown; in particular, a previously unknown inelastic mode and a family of evanescent pseudo-modes were revealed. The possibility of observing evanescent modes on the Sun and in the Earth’s atmosphere was analyzed. The specific features of the propagation of acoustic-gravity waves at the interface between two isothermal half-spaces with different temperatures depending on their spectral parameters and the temperature jump magnitude at the interface were studied. The peculiarities of the interaction of acoustic-gravity waves with spatially inhomogeneous atmospheric flows were also investigated. The observed effects resulting from such interaction were analyzed to reveal the wave propagation azimuths, the change in their amplitudes, and the effect of blocking in the counterflow. The effect of vertical nonisothermicity on the propagation of acoustic-gravity waves, including the modification of acoustic and gravitational regions depending on the temperature, was studied. Based on the modified Navier-Stokes and heat-transfer equations, the effect of attenuation on the propagation of acoustic-gravity waves in the atmosphere was analyzed. The specific features of the viscous attenuation of different evanescent AGW types in the atmosphere were considered. The rotation of the atmosphere was shown to result in the modification of the continuous spectrum of evanescent AGWs with frequencies exceeding the Coriolis parameter.

Abstract Image

Abstract Image

开发高层大气声重力波模型(综述)
摘要 介绍了作者近年来对地球高层大气声重力波(AGW)的研究成果。这项工作的总体目标是根据大气层的实际特性建立声引力波理论模型,并通过航天器测量数据对这些模型进行验证。从理论上证明了存在新的蒸发声引力波类型的可能性;特别是揭示了一种以前未知的非弹性模式和一系列蒸发伪模式。分析了在太阳和地球大气层中观测到蒸发模式的可能性。研究了声重力波在两个温度不同的等温半空间界面上传播的具体特征,这取决于它们的频谱参数和界面上的温度跃迁幅度。还研究了声重力波与空间不均匀大气流相互作用的特殊性。对观察到的这种相互作用产生的影响进行了分析,以揭示波的传播方位角、波幅的变化以及逆流中阻塞的影响。研究了垂直非等温性对声波-重力波传播的影响,包括温度对声波和重力波区域的影响。根据修正的纳维-斯托克斯方程和传热方程,分析了衰减对声重力波在大气中传播的影响。考虑了大气中不同蒸发型 AGW 的粘性衰减的具体特征。研究表明,大气层的旋转会导致频率超过科里奥利参数的蒸发 AGW 连续谱发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信