{"title":"Automatic piecewise linear regression","authors":"Mathias von Ottenbreit, Riccardo De Bin","doi":"10.1007/s00180-024-01475-4","DOIUrl":null,"url":null,"abstract":"<p>Regression modelling often presents a trade-off between predictiveness and interpretability. Highly predictive and popular tree-based algorithms such as Random Forest and boosted trees predict very well the outcome of new observations, but the effect of the predictors on the result is hard to interpret. Highly interpretable algorithms like linear effect-based boosting and MARS, on the other hand, are typically less predictive. Here we propose a novel regression algorithm, automatic piecewise linear regression (APLR), that combines the predictiveness of a boosting algorithm with the interpretability of a MARS model. In addition, as a boosting algorithm, it automatically handles variable selection, and, as a MARS-based approach, it takes into account non-linear relationships and possible interaction terms. We show on simulated and real data examples how APLR’s performance is comparable to that of the top-performing approaches in terms of prediction, while offering an easy way to interpret the results. APLR has been implemented in C++ and wrapped in a Python package as a Scikit-learn compatible estimator.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01475-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Regression modelling often presents a trade-off between predictiveness and interpretability. Highly predictive and popular tree-based algorithms such as Random Forest and boosted trees predict very well the outcome of new observations, but the effect of the predictors on the result is hard to interpret. Highly interpretable algorithms like linear effect-based boosting and MARS, on the other hand, are typically less predictive. Here we propose a novel regression algorithm, automatic piecewise linear regression (APLR), that combines the predictiveness of a boosting algorithm with the interpretability of a MARS model. In addition, as a boosting algorithm, it automatically handles variable selection, and, as a MARS-based approach, it takes into account non-linear relationships and possible interaction terms. We show on simulated and real data examples how APLR’s performance is comparable to that of the top-performing approaches in terms of prediction, while offering an easy way to interpret the results. APLR has been implemented in C++ and wrapped in a Python package as a Scikit-learn compatible estimator.
回归建模通常需要在预测性和可解释性之间做出权衡。高预测性和流行的基于树的算法(如随机森林和提升树)能很好地预测新观测结果,但预测因子对结果的影响却难以解释。另一方面,基于线性效应的提升算法和 MARS 等可解释性强的算法通常预测性较差。在这里,我们提出了一种新型回归算法--自动分片线性回归(APLR),它结合了提升算法的预测性和 MARS 模型的可解释性。此外,作为一种提升算法,它能自动处理变量选择;作为一种基于 MARS 的方法,它能考虑到非线性关系和可能的交互项。我们在模拟和真实数据示例中展示了 APLR 在预测方面的性能如何与表现最佳的方法相媲美,同时还提供了解释结果的简便方法。APLR 是用 C++ 实现的,并封装在一个 Python 软件包中,作为 Scikit-learn 兼容的估计器。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.