Zimeng Tan , Jianjiang Feng , Wangsheng Lu , Yin Yin , Guangming Yang , Jie Zhou
{"title":"Multi-task global optimization-based method for vascular landmark detection","authors":"Zimeng Tan , Jianjiang Feng , Wangsheng Lu , Yin Yin , Guangming Yang , Jie Zhou","doi":"10.1016/j.compmedimag.2024.102364","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular landmark detection plays an important role in medical analysis and clinical treatment. However, due to the complex topology and similar local appearance around landmarks, the popular heatmap regression based methods always suffer from the landmark confusion problem. Vascular landmarks are connected by vascular segments and have special spatial correlations, which can be utilized for performance improvement. In this paper, we propose a multi-task global optimization-based framework for accurate and automatic vascular landmark detection. A multi-task deep learning network is exploited to accomplish landmark heatmap regression, vascular semantic segmentation, and orientation field regression simultaneously. The two auxiliary objectives are highly correlated with the heatmap regression task and help the network incorporate the structural prior knowledge. During inference, instead of performing a max-voting strategy, we propose a global optimization-based post-processing method for final landmark decision. The spatial relationships between neighboring landmarks are utilized explicitly to tackle the landmark confusion problem. We evaluated our method on a cerebral MRA dataset with 564 volumes, a cerebral CTA dataset with 510 volumes, and an aorta CTA dataset with 50 volumes. The experiments demonstrate that the proposed method is effective for vascular landmark localization and achieves state-of-the-art performance.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"114 ","pages":"Article 102364"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular landmark detection plays an important role in medical analysis and clinical treatment. However, due to the complex topology and similar local appearance around landmarks, the popular heatmap regression based methods always suffer from the landmark confusion problem. Vascular landmarks are connected by vascular segments and have special spatial correlations, which can be utilized for performance improvement. In this paper, we propose a multi-task global optimization-based framework for accurate and automatic vascular landmark detection. A multi-task deep learning network is exploited to accomplish landmark heatmap regression, vascular semantic segmentation, and orientation field regression simultaneously. The two auxiliary objectives are highly correlated with the heatmap regression task and help the network incorporate the structural prior knowledge. During inference, instead of performing a max-voting strategy, we propose a global optimization-based post-processing method for final landmark decision. The spatial relationships between neighboring landmarks are utilized explicitly to tackle the landmark confusion problem. We evaluated our method on a cerebral MRA dataset with 564 volumes, a cerebral CTA dataset with 510 volumes, and an aorta CTA dataset with 50 volumes. The experiments demonstrate that the proposed method is effective for vascular landmark localization and achieves state-of-the-art performance.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.