Radiomics and artificial intelligence for risk stratification of pulmonary nodules: Ready for primetime?

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Roger Y Kim
{"title":"Radiomics and artificial intelligence for risk stratification of pulmonary nodules: Ready for primetime?","authors":"Roger Y Kim","doi":"10.3233/CBM-230360","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary nodules are ubiquitously found on computed tomography (CT) imaging either incidentally or via lung cancer screening and require careful diagnostic evaluation and management to both diagnose malignancy when present and avoid unnecessary biopsy of benign lesions. To engage in this complex decision-making, clinicians must first risk stratify pulmonary nodules to determine what the best course of action should be. Recent developments in imaging technology, computer processing power, and artificial intelligence algorithms have yielded radiomics-based computer-aided diagnosis tools that use CT imaging data including features invisible to the naked human eye to predict pulmonary nodule malignancy risk and are designed to be used as a supplement to routine clinical risk assessment. These tools vary widely in their algorithm construction, internal and external validation populations, intended-use populations, and commercial availability. While several clinical validation studies have been published, robust clinical utility and clinical effectiveness data are not yet currently available. However, there is reason for optimism as ongoing and future studies aim to target this knowledge gap, in the hopes of improving the diagnostic process for patients with pulmonary nodules.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/CBM-230360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary nodules are ubiquitously found on computed tomography (CT) imaging either incidentally or via lung cancer screening and require careful diagnostic evaluation and management to both diagnose malignancy when present and avoid unnecessary biopsy of benign lesions. To engage in this complex decision-making, clinicians must first risk stratify pulmonary nodules to determine what the best course of action should be. Recent developments in imaging technology, computer processing power, and artificial intelligence algorithms have yielded radiomics-based computer-aided diagnosis tools that use CT imaging data including features invisible to the naked human eye to predict pulmonary nodule malignancy risk and are designed to be used as a supplement to routine clinical risk assessment. These tools vary widely in their algorithm construction, internal and external validation populations, intended-use populations, and commercial availability. While several clinical validation studies have been published, robust clinical utility and clinical effectiveness data are not yet currently available. However, there is reason for optimism as ongoing and future studies aim to target this knowledge gap, in the hopes of improving the diagnostic process for patients with pulmonary nodules.

用于肺结节风险分层的放射组学和人工智能:准备好进入黄金时段了吗?
肺部结节是计算机断层扫描(CT)成像中偶然发现或通过肺癌筛查发现的常见病,需要进行仔细的诊断评估和管理,以便在出现结节时诊断出恶性肿瘤,并避免对良性病变进行不必要的活检。要做出这一复杂的决策,临床医生必须首先对肺结节进行风险分层,以确定最佳治疗方案。成像技术、计算机处理能力和人工智能算法的最新发展产生了基于放射组学的计算机辅助诊断工具,这些工具利用 CT 成像数据(包括肉眼看不到的特征)预测肺结节恶性肿瘤风险,旨在作为常规临床风险评估的补充。这些工具在算法构建、内部和外部验证人群、预期使用人群和商业可用性方面差异很大。虽然已经发表了一些临床验证研究,但目前还没有可靠的临床实用性和临床有效性数据。不过,我们有理由感到乐观,因为正在进行的和未来的研究都将瞄准这一知识空白,希望能改善肺结节患者的诊断过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信