A Convergent Numerical Algorithm for the Stochastic Growth-Fragmentation Problem

Dawei Wu, Zhennan Zhou
{"title":"A Convergent Numerical Algorithm for the Stochastic Growth-Fragmentation Problem","authors":"Dawei Wu, Zhennan Zhou","doi":"10.4208/aam.oa-2023-0035","DOIUrl":null,"url":null,"abstract":"The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and\ncontinuous-state Markov chain. The simulations of this stochastic process and\nits invariant measure are of interest. In this paper, we propose a numerical\nscheme for both the simulation of the process and the computation of the invariant measure, and show that under appropriate assumptions, the numerical\nchain converges to the continuous growth-fragmentation chain with an explicit\nerror bound. With a triangle inequality argument, we are also able to quantitatively estimate the distance between the invariant measures of these two\nMarkov chains.","PeriodicalId":517399,"journal":{"name":"Annals of Applied Mathematics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/aam.oa-2023-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain. The simulations of this stochastic process and its invariant measure are of interest. In this paper, we propose a numerical scheme for both the simulation of the process and the computation of the invariant measure, and show that under appropriate assumptions, the numerical chain converges to the continuous growth-fragmentation chain with an explicit error bound. With a triangle inequality argument, we are also able to quantitatively estimate the distance between the invariant measures of these two Markov chains.
随机增长-破碎问题的收敛数值算法
随机生长-分裂模型通过离散时间和连续状态马尔可夫链描述了结构化细胞群的时间演化过程。对这一随机过程及其不变度量的模拟很有意义。在本文中,我们提出了一种模拟该过程和计算不变度量的数值方案,并证明了在适当的假设条件下,该数值链收敛于连续的增长-分裂链,并具有明确的误差约束。通过三角不等式论证,我们还能定量估计这两条马尔可夫链的不变度量之间的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信