Zhiyu Zhang, Yang Zhao, Xiaoying Han, Liling Li, Bo Qing, Lifei Hou, Yulong Li, YuXue Zhang, Huan Zhang, Xiangming Liu, Bo Deng, Gang Xiong, Min Lv, Tuo Zhu, Chengwu Huang, Tianming Song, Yan Zhao, Yingjie Li, Lu Zhang, Xufei Xie, Jiyan Zhang, Jiamin Yang
{"title":"Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum","authors":"Zhiyu Zhang, Yang Zhao, Xiaoying Han, Liling Li, Bo Qing, Lifei Hou, Yulong Li, YuXue Zhang, Huan Zhang, Xiangming Liu, Bo Deng, Gang Xiong, Min Lv, Tuo Zhu, Chengwu Huang, Tianming Song, Yan Zhao, Yingjie Li, Lu Zhang, Xufei Xie, Jiyan Zhang, Jiamin Yang","doi":"10.1063/5.0177038","DOIUrl":null,"url":null,"abstract":"A self-consistent and precise method to determine the time-dependent radiative albedo, i.e., the ratio of the reemission flux to the incident flux, for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed. A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV. The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample. The results agree well owing to the symmetrical radiation in the secondary cavity. A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux, and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis, and also to agree well with the result of a simulation using the HYADES opacity.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"4 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0177038","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A self-consistent and precise method to determine the time-dependent radiative albedo, i.e., the ratio of the reemission flux to the incident flux, for an indirect-drive inertial confinement fusion Hohlraum wall material is proposed. A specially designed symmetrical triple-cavity gold Hohlraum is used to create approximately constant and near-equilibrium uniform radiation with a peak temperature of 160 eV. The incident flux at the secondary cavity waist is obtained from flux balance analysis and from the shock velocity of a standard sample. The results agree well owing to the symmetrical radiation in the secondary cavity. A self-consistent and precise time-dependent radiative albedo is deduced from the reliable reemission flux and the incident flux, and the result from the shock velocity is found to have a smaller uncertainty than that from the multi-angle flux balance analysis, and also to agree well with the result of a simulation using the HYADES opacity.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.