Common properties of a and b satisfying \(ab^n = b^{n+1}\) and \(ba^n = a^{n+1}\) in Banach algebras

IF 1.2 3区 数学 Q1 MATHEMATICS
Fei Peng, Xiaoxiang Zhang
{"title":"Common properties of a and b satisfying \\(ab^n = b^{n+1}\\) and \\(ba^n = a^{n+1}\\) in Banach algebras","authors":"Fei Peng,&nbsp;Xiaoxiang Zhang","doi":"10.1007/s43034-024-00328-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the common properties of elements <i>a</i> and <i>b</i> satisfying <span>\\(ab^n = b^{n + 1}\\)</span> and <span>\\(ba^n = a^{n + 1}\\)</span> in the settings of Banach algebras, rings and operator algebras from the viewpoint of generalized inverses and spectral theory, where <i>n</i> is a positive integer. As applications, we show that if </p><div><div><span>$$\\begin{aligned} M_0 = \\begin{pmatrix} T &amp;{} 0 \\\\ 0 &amp;{} N_0 \\end{pmatrix}, M_1 = \\begin{pmatrix} T &amp;{} S \\\\ 0 &amp;{} N_1 \\end{pmatrix} \\ \\text {and}\\ M_2 = \\begin{pmatrix} T &amp;{} 0 \\\\ W &amp;{} N_2 \\end{pmatrix} \\end{aligned}$$</span></div></div><p>are triangular operator matrices acting on the Banach space <span>\\(X \\oplus X\\)</span> such that <span>\\(N_0, N_1\\)</span> and <span>\\(N_2\\)</span> are nilpotent, then many subsets of the spectrum of <span>\\(M_0\\)</span> are the same with those of <span>\\(M_1\\)</span> and <span>\\(M_2.\\)</span> Moreover, we improve some recent extensions of Jacobson’s lemma and Cline’s formula for the Drazin inverse, generalized Drazin inverse and generalized Drazin–Riesz inverse.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00328-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the common properties of elements a and b satisfying \(ab^n = b^{n + 1}\) and \(ba^n = a^{n + 1}\) in the settings of Banach algebras, rings and operator algebras from the viewpoint of generalized inverses and spectral theory, where n is a positive integer. As applications, we show that if

$$\begin{aligned} M_0 = \begin{pmatrix} T &{} 0 \\ 0 &{} N_0 \end{pmatrix}, M_1 = \begin{pmatrix} T &{} S \\ 0 &{} N_1 \end{pmatrix} \ \text {and}\ M_2 = \begin{pmatrix} T &{} 0 \\ W &{} N_2 \end{pmatrix} \end{aligned}$$

are triangular operator matrices acting on the Banach space \(X \oplus X\) such that \(N_0, N_1\) and \(N_2\) are nilpotent, then many subsets of the spectrum of \(M_0\) are the same with those of \(M_1\) and \(M_2.\) Moreover, we improve some recent extensions of Jacobson’s lemma and Cline’s formula for the Drazin inverse, generalized Drazin inverse and generalized Drazin–Riesz inverse.

巴拿赫代数中满足 $ab^n = b^{n+1}$$ 和 $ba^n = a^{n+1}$$ 的 a 和 b 的共同性质
本文从广义反演和谱理论的角度,描述了满足 \(ab^n = b^{n + 1}\ 和 \(ba^n = a^{n + 1}\ 的元素 a 和 b 在巴拿赫代数、环和算子代数中的共同性质,其中 n 为正整数。作为应用,我们证明如果 $$\begin{aligned}M_0 = \begin{pmatrix}T &{} 0 \ 0 &{}N_0 (end{pmatrix}),M_1 = (begin{pmatrix})。T &{} S (0 &{}N_1\end{pmatrix}\ 和} M_2 = (begin{pmatrix})T &{} 0 (W &{}N_2 \end{pmatrix}\end{aligned}$$ 是作用于巴纳赫空间 \(X oplus X\) 的三角算子矩阵,使得 \(N_0, N_1\) 和 \(N_2\) 都是零potent 的,那么 \(M_0\) 的谱的许多子集与 \(M_1\) 和 \(M_2.) 的谱的子集是相同的。\此外,我们还改进了雅各布森 Lemma 和克莱因 Cline 公式关于 Drazin 逆、广义 Drazin 逆和广义 Drazin-Riesz 逆的一些最新扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信