{"title":"Modelling the Deformation of Polydomain Liquid Crystal Elastomers as a State of Hyperelasticity","authors":"Afshin Anssari-Benam, Zhengxuan Wei, Ruobing Bai","doi":"10.1007/s10659-024-10055-y","DOIUrl":null,"url":null,"abstract":"<div><p>A hyperelasticity modelling approach is employed for capturing various and complex mechanical behaviours exhibited by macroscopically isotropic polydomain liquid crystal elastomers (LCEs). These include the highly non-linear behaviour of nematic-genesis polydomain LCEs, and the soft elasticity plateau in isotropic-genesis polydomain LCEs, under finite multimodal deformations (uniaxial and pure shear) using in-house synthesised acrylate-based LCE samples. Examples of application to capturing continuous softening (i.e., in the primary loading path), discontinuous softening (i.e., in the unloading path) and auxetic behaviours are also demonstrated on using extant datasets. It is shown that our comparatively simple model, which breaks away from the neo-classical theory of liquid crystal elastomers, captures the foregoing behaviours favourably, simply as states of hyperelasticity. Improved modelling results obtained by our approach compared with the existing models are also discussed. Given the success of the considered model in application to these datasets and deformations, the simplicity of its functional form (and thereby its implementation), and comparatively low(er) number of parameters, the presented isotropic hyperelastic strain energy function here is suggested for: (i) modelling the general mechanical behaviour of LCEs, (ii) the backbone in the neo-classical theory, and/or (iii) the basic hyperelastic model in other frameworks where the incorporation of the director, anisotropy, viscoelasticity, temperature, softening etc parameters may be required.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-024-10055-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10055-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A hyperelasticity modelling approach is employed for capturing various and complex mechanical behaviours exhibited by macroscopically isotropic polydomain liquid crystal elastomers (LCEs). These include the highly non-linear behaviour of nematic-genesis polydomain LCEs, and the soft elasticity plateau in isotropic-genesis polydomain LCEs, under finite multimodal deformations (uniaxial and pure shear) using in-house synthesised acrylate-based LCE samples. Examples of application to capturing continuous softening (i.e., in the primary loading path), discontinuous softening (i.e., in the unloading path) and auxetic behaviours are also demonstrated on using extant datasets. It is shown that our comparatively simple model, which breaks away from the neo-classical theory of liquid crystal elastomers, captures the foregoing behaviours favourably, simply as states of hyperelasticity. Improved modelling results obtained by our approach compared with the existing models are also discussed. Given the success of the considered model in application to these datasets and deformations, the simplicity of its functional form (and thereby its implementation), and comparatively low(er) number of parameters, the presented isotropic hyperelastic strain energy function here is suggested for: (i) modelling the general mechanical behaviour of LCEs, (ii) the backbone in the neo-classical theory, and/or (iii) the basic hyperelastic model in other frameworks where the incorporation of the director, anisotropy, viscoelasticity, temperature, softening etc parameters may be required.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.