Alexandre Selvestrel, Julia Rocha, Rémi Carminati, and Romain Pierrat
{"title":"Multiple scattering theory in one dimensional space and time dependent disorder: average field [Invited]","authors":"Alexandre Selvestrel, Julia Rocha, Rémi Carminati, and Romain Pierrat","doi":"10.1364/ome.517488","DOIUrl":null,"url":null,"abstract":"We theoretically study the propagation of light in one-dimensional space- and time-dependent disorder. The disorder is described by a fluctuating permittivity ε(<i>x, t</i>) exhibiting short-range correlations in space and time, without cross correlation between them. Depending on the illumination conditions, we show that the intensity of the average field decays exponentially in space or in time, with characteristic length or time defining the scattering mean-free path ℓ<sub><i>s</i></sub> and the scattering mean-free time <i>τ</i><sub><i>s</i></sub>. In the weak scattering regime, we provide explicit expressions for ℓ<sub><i>s</i></sub> and <i>τ</i><sub><i>s</i></sub>, that are checked against rigorous numerical simulations.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.517488","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We theoretically study the propagation of light in one-dimensional space- and time-dependent disorder. The disorder is described by a fluctuating permittivity ε(x, t) exhibiting short-range correlations in space and time, without cross correlation between them. Depending on the illumination conditions, we show that the intensity of the average field decays exponentially in space or in time, with characteristic length or time defining the scattering mean-free path ℓs and the scattering mean-free time τs. In the weak scattering regime, we provide explicit expressions for ℓs and τs, that are checked against rigorous numerical simulations.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.