The Shigesada-Kawasaki-Teramoto model: conditional symmetries, exact solutions and their properties

Roman Cherniha, Vasyl' Davydovych, John R. King
{"title":"The Shigesada-Kawasaki-Teramoto model: conditional symmetries, exact solutions and their properties","authors":"Roman Cherniha, Vasyl' Davydovych, John R. King","doi":"arxiv-2402.19050","DOIUrl":null,"url":null,"abstract":"We study a simplification of the well-known Shigesada-Kawasaki-Teramoto\nmodel, which consists of two nonlinear reaction-diffusion equations with\ncross-diffusion. A complete set of Q-conditional (nonclassical) symmetries is\nderived using an algorithm adopted for the construction of conditional\nsymmetries. The symmetries obtained are applied for finding a wide range of\nexact solutions, possible biological interpretation of some of which being\npresented. Moreover, an alternative application of the simplified model related\nto the polymerisation process is suggested and exact solutions are found in\nthis case as well.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.19050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a simplification of the well-known Shigesada-Kawasaki-Teramoto model, which consists of two nonlinear reaction-diffusion equations with cross-diffusion. A complete set of Q-conditional (nonclassical) symmetries is derived using an algorithm adopted for the construction of conditional symmetries. The symmetries obtained are applied for finding a wide range of exact solutions, possible biological interpretation of some of which being presented. Moreover, an alternative application of the simplified model related to the polymerisation process is suggested and exact solutions are found in this case as well.
重砂田-川崎-寺本模型:条件对称性、精确解及其特性
我们研究了著名的重砂-川崎-特拉莫托模型的简化,该模型由两个交叉扩散的非线性反应-扩散方程组成。利用构建条件对称性所采用的算法,得出了一套完整的 Q 条件(非经典)对称性。所获得的对称性被用于寻找各种精确解,其中一些可能的生物学解释也被提出。此外,还提出了与聚合过程有关的简化模型的另一种应用,并在这种情况下找到了精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信