Energy behavior for Sobolev solutions to viscoelastic damped wave models with time-dependent oscillating coefficient

Pub Date : 2024-02-28 DOI:10.1002/mana.202200431
Xiaojun Lu
{"title":"Energy behavior for Sobolev solutions to viscoelastic damped wave models with time-dependent oscillating coefficient","authors":"Xiaojun Lu","doi":"10.1002/mana.202200431","DOIUrl":null,"url":null,"abstract":"<p>In this work, we study the asymptotic behavior of the structurally damped wave equations arising from the viscoelastic mechanics. We are particularly interested in the complicated interaction of the time-dependent oscillating coefficients on the Dirichlet Laplacian operator and the structurally damped terms. On the one hand, by the application of WKB analysis, we explore the asymptotic energy estimates of the wave equations influenced by four types of oscillating mechanisms. On the other hand, in order to prove the optimality of the energy estimates for the critical cases, typical coefficients and initial Cauchy data will be constructed to show the lower bound of the energy growth rate by the application of instability arguments.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the asymptotic behavior of the structurally damped wave equations arising from the viscoelastic mechanics. We are particularly interested in the complicated interaction of the time-dependent oscillating coefficients on the Dirichlet Laplacian operator and the structurally damped terms. On the one hand, by the application of WKB analysis, we explore the asymptotic energy estimates of the wave equations influenced by four types of oscillating mechanisms. On the other hand, in order to prove the optimality of the energy estimates for the critical cases, typical coefficients and initial Cauchy data will be constructed to show the lower bound of the energy growth rate by the application of instability arguments.

分享
查看原文
具有随时间变化的振荡系数的粘弹性阻尼波模型的索波列夫解的能量行为
在这项工作中,我们研究了粘弹性力学中产生的结构阻尼波方程的渐近行为。我们尤其感兴趣的是,Dirichlet 拉普拉斯算子上与时间相关的振荡系数与结构阻尼项之间复杂的相互作用。一方面,通过应用 WKB 分析,我们探索了受四种振荡机制影响的波方程的渐近能量估计。另一方面,为了证明临界情况下能量估计的最优性,我们将构建典型系数和初始 Cauchy 数据,通过不稳定性论证来说明能量增长率的下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信