Francesco Giordano, Marcella Niglio, Maria Lucia Parrella
{"title":"Testing Spatial Dynamic Panel Data Models with Heterogeneous Spatial and Regression Coefficients","authors":"Francesco Giordano, Marcella Niglio, Maria Lucia Parrella","doi":"10.1111/jtsa.12738","DOIUrl":null,"url":null,"abstract":"<p>Spatio-temporal data are often analysed by means of <i>spatial dynamic panel data (SDPD) models</i>. In the last decade, several versions of these models have been proposed, generally based on specific assumptions and estimator properties. We focus on an <i>SDPD</i> model with heterogeneous coefficients both in the spatial and exogeneous regression components. We propose a strategy to identify the specific structure of the <i>SDPD</i> model through a multiple testing procedure that allows to choose between a general version of the model and a nested version derived from the general one by imposing restrictions on the parameters. Our proposal can be used to test the homogeneity of the model parameters as well as the absence of specific components, such as spatial effects, dynamic effects or exogenous regressors. It is also possible to use the proposed testing procedure for the identification of relevant locations. The theoretical results highlight the consistency of the testing procedure in the high-dimensional setup, when the number of spatial units goes to infinity and exceeds the number of time-observations per spatial unit. Further, we also conduct a Monte Carlo simulation study, which gives empirical evidence of the good performance of the testing procedure in finite samples.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 5","pages":"771-799"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12738","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Spatio-temporal data are often analysed by means of spatial dynamic panel data (SDPD) models. In the last decade, several versions of these models have been proposed, generally based on specific assumptions and estimator properties. We focus on an SDPD model with heterogeneous coefficients both in the spatial and exogeneous regression components. We propose a strategy to identify the specific structure of the SDPD model through a multiple testing procedure that allows to choose between a general version of the model and a nested version derived from the general one by imposing restrictions on the parameters. Our proposal can be used to test the homogeneity of the model parameters as well as the absence of specific components, such as spatial effects, dynamic effects or exogenous regressors. It is also possible to use the proposed testing procedure for the identification of relevant locations. The theoretical results highlight the consistency of the testing procedure in the high-dimensional setup, when the number of spatial units goes to infinity and exceeds the number of time-observations per spatial unit. Further, we also conduct a Monte Carlo simulation study, which gives empirical evidence of the good performance of the testing procedure in finite samples.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.