{"title":"Identity-Based Encryption with (Almost) Tight Security in the Multi-instance, Multi-ciphertext Setting","authors":"Dennis Hofheinz, Jessica Koch, Christoph Striecks","doi":"10.1007/s00145-024-09496-4","DOIUrl":null,"url":null,"abstract":"<p>We construct an identity-based encryption (IBE) scheme that is tightly secure in a very strong sense. Specifically, we consider a setting with many instances of the scheme and many encryptions per instance. In this setting, we reduce the security of our scheme to a variant of a simple assumption used for a similar purpose by Chen and Wee (CRYPTO 2013, Springer, 2013). The security loss of our reduction is <span>\\(\\textbf{O} (k)\\)</span> (where <span>\\(k \\)</span> is the security parameter). Our scheme is the first IBE scheme to achieve this strong flavor of tightness under a simple assumption. Technically, our scheme is a variation of the IBE scheme by Chen and Wee. However, in order to “lift” their results to the multi-instance, multi-ciphertext case, we need to develop new ideas. In particular, while we build on (and extend) their high-level proof strategy, we deviate significantly in the low-level proof steps.</p>","PeriodicalId":54849,"journal":{"name":"Journal of Cryptology","volume":"46 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00145-024-09496-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct an identity-based encryption (IBE) scheme that is tightly secure in a very strong sense. Specifically, we consider a setting with many instances of the scheme and many encryptions per instance. In this setting, we reduce the security of our scheme to a variant of a simple assumption used for a similar purpose by Chen and Wee (CRYPTO 2013, Springer, 2013). The security loss of our reduction is \(\textbf{O} (k)\) (where \(k \) is the security parameter). Our scheme is the first IBE scheme to achieve this strong flavor of tightness under a simple assumption. Technically, our scheme is a variation of the IBE scheme by Chen and Wee. However, in order to “lift” their results to the multi-instance, multi-ciphertext case, we need to develop new ideas. In particular, while we build on (and extend) their high-level proof strategy, we deviate significantly in the low-level proof steps.
期刊介绍:
The Journal of Cryptology is a forum for original results in all areas of modern information security. Both cryptography and cryptanalysis are covered, including information theoretic and complexity theoretic perspectives as well as implementation, application, and standards issues. Coverage includes such topics as public key and conventional algorithms and their implementations, cryptanalytic attacks, pseudo-random sequences, computational number theory, cryptographic protocols, untraceability, privacy, authentication, key management and quantum cryptography. In addition to full-length technical, survey, and historical articles, the journal publishes short notes.