{"title":"Sample size calculation for comparing two ROC curves","authors":"Sin‐Ho Jung","doi":"10.1002/pst.2371","DOIUrl":null,"url":null,"abstract":"Biomarkers are key components of personalized medicine. In this paper, we consider biomarkers taking continuous values that are associated with disease status, called case and control. The performance of such a biomarker is evaluated by the area under the curve (AUC) of its receiver operating characteristic curve. Oftentimes, two biomarkers are collected from each subject to test if one has a larger AUC than the other. We propose a simple non‐parametric statistical test for comparing the performance of two biomarkers. We also present a simple sample size calculation method for this test statistic. Our sample size formula requires specification of AUC values (or the standardized effect size of each biomarker between cases and controls together with the correlation coefficient between two biomarkers), prevalence of cases in the study population, type I error rate, and power. Through simulations, we show that the testing on two biomarkers controls type I error rate accurately and the proposed sample size closely maintains specified statistical power.","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2371","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomarkers are key components of personalized medicine. In this paper, we consider biomarkers taking continuous values that are associated with disease status, called case and control. The performance of such a biomarker is evaluated by the area under the curve (AUC) of its receiver operating characteristic curve. Oftentimes, two biomarkers are collected from each subject to test if one has a larger AUC than the other. We propose a simple non‐parametric statistical test for comparing the performance of two biomarkers. We also present a simple sample size calculation method for this test statistic. Our sample size formula requires specification of AUC values (or the standardized effect size of each biomarker between cases and controls together with the correlation coefficient between two biomarkers), prevalence of cases in the study population, type I error rate, and power. Through simulations, we show that the testing on two biomarkers controls type I error rate accurately and the proposed sample size closely maintains specified statistical power.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.