Research on the hydrodynamic performance of propellers under oblique flow conditions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinxin Wei, Tianhong Yan, Tao Sun, Shulin Liu, Hongyi Du
{"title":"Research on the hydrodynamic performance of propellers under oblique flow conditions","authors":"Xinxin Wei, Tianhong Yan, Tao Sun, Shulin Liu, Hongyi Du","doi":"10.1177/14750902241231349","DOIUrl":null,"url":null,"abstract":"The phenomenon of oblique water inflow is widespread in the operation of thrusters, which will cause adverse effects on the hydrodynamic performance of thrusters. In order to investigate the hydrodynamic performance and stress variation of the propeller in oblique flow, based on computational fluid dynamics theory, this paper takes the DTMB4119 propeller as the research object and conducts numerical simulation research on the propeller in oblique flow by solving the RANS equation. By calculating the open water performance curve and surface pressure distribution of the propeller, the rationality of the numerical method and the meshing are verified. Considering the flow field information such as velocity, oblique flow angles, flow line distribution, and pressure distribution, the changes in hydrodynamic characteristics of the propeller are simulated and analyzed. The results show that the uneven distribution of pressure on the propeller blade surface increases with a decrease in the advance coefficient. The force pulsation amplitude of a single blade increases with an increase in oblique flow angles. With the increase in oblique flow angles, the thrust, torque, and efficiency of the propeller show different increasing trends. With the increase in propeller advance coefficient, propeller thrust and torque decrease gradually, and propeller efficiency increases gradually. By using mature propellers, this paper has more reference value for studying the flow field around the ship hull and the hydrodynamic performance of propellers in the process of ship maneuvering.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241231349","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenon of oblique water inflow is widespread in the operation of thrusters, which will cause adverse effects on the hydrodynamic performance of thrusters. In order to investigate the hydrodynamic performance and stress variation of the propeller in oblique flow, based on computational fluid dynamics theory, this paper takes the DTMB4119 propeller as the research object and conducts numerical simulation research on the propeller in oblique flow by solving the RANS equation. By calculating the open water performance curve and surface pressure distribution of the propeller, the rationality of the numerical method and the meshing are verified. Considering the flow field information such as velocity, oblique flow angles, flow line distribution, and pressure distribution, the changes in hydrodynamic characteristics of the propeller are simulated and analyzed. The results show that the uneven distribution of pressure on the propeller blade surface increases with a decrease in the advance coefficient. The force pulsation amplitude of a single blade increases with an increase in oblique flow angles. With the increase in oblique flow angles, the thrust, torque, and efficiency of the propeller show different increasing trends. With the increase in propeller advance coefficient, propeller thrust and torque decrease gradually, and propeller efficiency increases gradually. By using mature propellers, this paper has more reference value for studying the flow field around the ship hull and the hydrodynamic performance of propellers in the process of ship maneuvering.
斜流条件下螺旋桨的流体力学性能研究
推进器运行中普遍存在斜向进水现象,这将对推进器的水动力性能造成不利影响。为了研究斜流中螺旋桨的水动力性能和应力变化,本文以计算流体力学理论为基础,以 DTMB4119 螺旋桨为研究对象,通过求解 RANS 方程,对斜流中的螺旋桨进行了数值模拟研究。通过计算螺旋桨的开水性能曲线和表面压力分布,验证了数值方法和网格划分的合理性。综合考虑流速、斜流角、流线分布、压力分布等流场信息,模拟分析了螺旋桨水动力特性的变化。结果表明,螺旋桨桨叶表面压力的不均匀分布随着推进系数的减小而增加。单个桨叶的力脉动振幅随着斜流角的增大而增大。随着斜流角的增大,螺旋桨的推力、扭矩和效率呈现出不同的增大趋势。随着螺旋桨推进系数的增大,螺旋桨推力和扭矩逐渐减小,螺旋桨效率逐渐增大。本文采用成熟的螺旋桨,对研究船体周围的流场和螺旋桨在船舶操纵过程中的水动力性能更有参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信