{"title":"GENERATING FUNCTIONS FOR THE QUOTIENTS OF NUMERICAL SEMIGROUPS","authors":"FEIHU LIU","doi":"10.1017/s0004972724000054","DOIUrl":null,"url":null,"abstract":"We propose generating functions, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline1.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline2.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by extracting the constant term of a rational function. We use <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline3.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to give a system of generators for the quotient of the numerical semigroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline4.png\" /> <jats:tex-math> $\\langle a_1,a_2,a_3\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:italic>p</jats:italic> for a small positive integer <jats:italic>p</jats:italic>, and we characterise the generators of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline5.png\" /> <jats:tex-math> ${\\langle A\\rangle }/{p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for a general numerical semigroup <jats:italic>A</jats:italic> and any positive integer <jats:italic>p</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"42 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose generating functions, $\textrm {RGF}_p(x)$ , for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain $\textrm {RGF}_p(x)$ by extracting the constant term of a rational function. We use $\textrm {RGF}_p(x)$ to give a system of generators for the quotient of the numerical semigroup $\langle a_1,a_2,a_3\rangle $ by p for a small positive integer p, and we characterise the generators of ${\langle A\rangle }/{p}$ for a general numerical semigroup A and any positive integer p.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society