GENERATING FUNCTIONS FOR THE QUOTIENTS OF NUMERICAL SEMIGROUPS

IF 0.6 4区 数学 Q3 MATHEMATICS
FEIHU LIU
{"title":"GENERATING FUNCTIONS FOR THE QUOTIENTS OF NUMERICAL SEMIGROUPS","authors":"FEIHU LIU","doi":"10.1017/s0004972724000054","DOIUrl":null,"url":null,"abstract":"We propose generating functions, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline1.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline2.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by extracting the constant term of a rational function. We use <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline3.png\" /> <jats:tex-math> $\\textrm {RGF}_p(x)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to give a system of generators for the quotient of the numerical semigroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline4.png\" /> <jats:tex-math> $\\langle a_1,a_2,a_3\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:italic>p</jats:italic> for a small positive integer <jats:italic>p</jats:italic>, and we characterise the generators of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000054_inline5.png\" /> <jats:tex-math> ${\\langle A\\rangle }/{p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for a general numerical semigroup <jats:italic>A</jats:italic> and any positive integer <jats:italic>p</jats:italic>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"42 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose generating functions, $\textrm {RGF}_p(x)$ , for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain $\textrm {RGF}_p(x)$ by extracting the constant term of a rational function. We use $\textrm {RGF}_p(x)$ to give a system of generators for the quotient of the numerical semigroup $\langle a_1,a_2,a_3\rangle $ by p for a small positive integer p, and we characterise the generators of ${\langle A\rangle }/{p}$ for a general numerical semigroup A and any positive integer p.
数值半群商数的生成函数
我们提出了与西尔维斯特数数相关的数值半群商数的生成函数 $\textrm {RGF}_p(x)$ 。利用麦克马洪的分割分析,我们可以通过提取有理函数的常数项得到 $\textrm {RGF}_p(x)$ 。我们利用 $\textrm {RGF}_p(x)$ 给出了一个小正整数 p 的数值半群 $\langle a_1,a_2,a_3\rangle $ 的商的生成器系统,并描述了一般数值半群 A 和任意正整数 p 的 ${\langle A\rangle }/{p}$ 的生成器的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信