Poset Ramsey Number $$R(P,Q_n)$$ . II. N-Shaped Poset

Order Pub Date : 2024-02-28 DOI:10.1007/s11083-024-09663-z
Maria Axenovich, Christian Winter
{"title":"Poset Ramsey Number $$R(P,Q_n)$$ . II. N-Shaped Poset","authors":"Maria Axenovich, Christian Winter","doi":"10.1007/s11083-024-09663-z","DOIUrl":null,"url":null,"abstract":"<p>Given partially ordered sets (posets) <span>\\((P, \\le _P)\\)</span> and <span>\\((P', \\le _{P'})\\)</span>, we say that <span>\\(P'\\)</span> contains a copy of <i>P</i> if for some injective function <span>\\(f:P\\rightarrow P'\\)</span> and for any <span>\\(A, B\\in P\\)</span>, <span>\\(A\\le _P B\\)</span> if and only if <span>\\(f(A)\\le _{P'} f(B)\\)</span>. For any posets <i>P</i> and <i>Q</i>, the poset Ramsey number <i>R</i>(<i>P</i>, <i>Q</i>) is the least positive integer <i>N</i> such that no matter how the elements of an <i>N</i>-dimensional Boolean lattice are colored in blue and red, there is either a copy of <i>P</i> with all blue elements or a copy of <i>Q</i> with all red elements. We focus on the poset Ramsey number <span>\\(R(P, Q_n)\\)</span> for a fixed poset <i>P</i> and an <i>n</i>-dimensional Boolean lattice <span>\\(Q_n\\)</span>, as <i>n</i> grows large. It is known that <span>\\(n+c_1(P) \\le R(P,Q_n) \\le c_2(P) n\\)</span>, for positive constants <span>\\(c_1\\)</span> and <span>\\(c_2\\)</span>. However, there is no poset <i>P</i> known, for which <span>\\(R(P, Q_n)&gt; (1+\\epsilon )n\\)</span>, for <span>\\(\\epsilon &gt;0\\)</span>. This paper is devoted to a new method for finding upper bounds on <span>\\(R(P, Q_n)\\)</span> using a duality between copies of <span>\\(Q_n\\)</span> and sets of elements that cover them, referred to as blockers. We prove several properties of blockers and their direct relation to the Ramsey numbers. Using these properties we show that <span>\\(R(\\mathcal {N},Q_n)=n+\\Theta (n/\\log n)\\)</span>, for a poset <span>\\(\\mathcal {N}\\)</span> with four elements <i>A</i>, <i>B</i>, <i>C</i>, and <i>D</i>, such that <span>\\(A&lt;C\\)</span>, <span>\\(B&lt;D\\)</span>, <span>\\(B&lt;C\\)</span>, and the remaining pairs of elements are incomparable.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09663-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given partially ordered sets (posets) \((P, \le _P)\) and \((P', \le _{P'})\), we say that \(P'\) contains a copy of P if for some injective function \(f:P\rightarrow P'\) and for any \(A, B\in P\), \(A\le _P B\) if and only if \(f(A)\le _{P'} f(B)\). For any posets P and Q, the poset Ramsey number R(PQ) is the least positive integer N such that no matter how the elements of an N-dimensional Boolean lattice are colored in blue and red, there is either a copy of P with all blue elements or a copy of Q with all red elements. We focus on the poset Ramsey number \(R(P, Q_n)\) for a fixed poset P and an n-dimensional Boolean lattice \(Q_n\), as n grows large. It is known that \(n+c_1(P) \le R(P,Q_n) \le c_2(P) n\), for positive constants \(c_1\) and \(c_2\). However, there is no poset P known, for which \(R(P, Q_n)> (1+\epsilon )n\), for \(\epsilon >0\). This paper is devoted to a new method for finding upper bounds on \(R(P, Q_n)\) using a duality between copies of \(Q_n\) and sets of elements that cover them, referred to as blockers. We prove several properties of blockers and their direct relation to the Ramsey numbers. Using these properties we show that \(R(\mathcal {N},Q_n)=n+\Theta (n/\log n)\), for a poset \(\mathcal {N}\) with four elements ABC, and D, such that \(A<C\), \(B<D\), \(B<C\), and the remaining pairs of elements are incomparable.

Poset 拉姆齐数 $$R(P,Q_n)$$ .N 型 Poset
给定部分有序集合(posets)\((P, \le _P)\) 和 \((P',\le _{P'})\), 我们说\(P'\)包含P的一个副本,如果对于某个注入函数\(f:Prightarrow P'),并且对于任意的(A, B\in P\), \(A\le _P B\) if and only if \(f(A)\le _{P'} f(B)\).对于任意正集 P 和 Q,正集拉姆齐数 R(P,Q)是最小正整数 N,使得无论 N 维布尔网格的元素如何用蓝色和红色着色,要么存在一个包含所有蓝色元素的 P 副本,要么存在一个包含所有红色元素的 Q 副本。我们重点研究当 n 越大时,对于一个固定的正集 P 和一个 n 维布尔网格 \(Q_n\),正集拉姆齐数 \(R(P,Q_n)\)。众所周知,对于正常数 \(c_1\) 和 \(c_2\), \(n+c_1(P) \le R(P,Q_n) \le c_2(P) n\).然而,目前还不存在一个已知的正集P,对于它,\(R(P,Q_n)>(1+epsilon )n\), for \(\epsilon >0\)。本文致力于研究一种新方法,利用 \(Q_n\) 的副本和覆盖它们的元素集之间的对偶性(被称为 blockers)来寻找 \(R(P, Q_n)\) 的上界。我们证明了封块的几个性质及其与拉姆齐数的直接关系。利用这些性质,我们证明了对于一个具有四个元素 A、B、C 和 D 的集合 \(\mathcal {N}\) 来说,\(R(\mathcal {N},Q_n)=n+\Theta (n/\log n)\),使得 \(A<C\)、\(B<D\)、\(B<C\)和其余的元素对是不可比的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信