Extremal spectral results of planar graphs without vertex-disjoint cycles

Pub Date : 2024-02-28 DOI:10.1002/jgt.23084
Longfei Fang, Huiqiu Lin, Yongtang Shi
{"title":"Extremal spectral results of planar graphs without vertex-disjoint cycles","authors":"Longfei Fang,&nbsp;Huiqiu Lin,&nbsp;Yongtang Shi","doi":"10.1002/jgt.23084","DOIUrl":null,"url":null,"abstract":"<p>Given a planar graph family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,{\\mathscr{F}})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,{\\mathscr{F}})$</annotation>\n </semantics></math> be the maximum size and maximum spectral radius over all <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>-free planar graphs, respectively. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <annotation> $t{C}_{\\ell }$</annotation>\n </semantics></math> be the disjoint union of <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math>-cycles, and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <annotation> $t{\\mathscr{C}}$</annotation>\n </semantics></math> be the family of <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math> vertex-disjoint cycles without length restriction. Tait and Tobin determined that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\n </semantics></math> is the extremal spectral graph among all planar graphs with sufficiently large order <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, which implies the extremal graphs of both <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{C}_{\\ell })$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{\\mathscr{C}})$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $t\\ge 3$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${K}_{2}+{P}_{n-2}$</annotation>\n </semantics></math>. In this paper, we first determine <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <msub>\n <mi>C</mi>\n <mi>ℓ</mi>\n </msub>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{C}_{\\ell })$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mi>p</mi>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mi>C</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $spe{x}_{{\\mathscr{P}}}(n,t{\\mathscr{C}})$</annotation>\n </semantics></math> and characterize the unique extremal graph for <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>≤</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $1\\le t\\le 2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\ell \\ge 3$</annotation>\n </semantics></math> and sufficiently large <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. Second, we obtain the exact values of <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>2</mn>\n <msub>\n <mi>C</mi>\n <mn>4</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,2{C}_{4})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <msub>\n <mi>x</mi>\n <mi>P</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e{x}_{{\\mathscr{P}}}(n,2{\\mathscr{C}})$</annotation>\n </semantics></math>, which solve a conjecture of Li for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2661</mn>\n </mrow>\n <annotation> $n\\ge 2661$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a planar graph family F ${\rm{ {\mathcal F} }}$ , let e x P ( n , F ) $e{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ and s p e x P ( n , F ) $spe{x}_{{\mathscr{P}}}(n,{\mathscr{F}})$ be the maximum size and maximum spectral radius over all n $n$ -vertex F ${\rm{ {\mathcal F} }}$ -free planar graphs, respectively. Let t C $t{C}_{\ell }$ be the disjoint union of t $t$ copies of $\ell $ -cycles, and t C $t{\mathscr{C}}$ be the family of t $t$ vertex-disjoint cycles without length restriction. Tait and Tobin determined that K 2 + P n 2 ${K}_{2}+{P}_{n-2}$ is the extremal spectral graph among all planar graphs with sufficiently large order n $n$ , which implies the extremal graphs of both s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ for t 3 $t\ge 3$ are K 2 + P n 2 ${K}_{2}+{P}_{n-2}$ . In this paper, we first determine s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{C}_{\ell })$ and s p e x P ( n , t C ) $spe{x}_{{\mathscr{P}}}(n,t{\mathscr{C}})$ and characterize the unique extremal graph for 1 t 2 $1\le t\le 2$ , 3 $\ell \ge 3$ and sufficiently large n $n$ . Second, we obtain the exact values of e x P ( n , 2 C 4 ) $e{x}_{{\mathscr{P}}}(n,2{C}_{4})$ and e x P ( n , 2 C ) $e{x}_{{\mathscr{P}}}(n,2{\mathscr{C}})$ , which solve a conjecture of Li for n 2661 $n\ge 2661$ .

分享
查看原文
无顶点相交循环平面图的极谱结果
给定一个平面图族 ,设 和 分别是所有无顶点平面图的最大尺寸和最大谱半径。设 为 - 循环的副本的不相邻联盟,且 为无长度限制的顶点不相邻循环族。Tait 和 Tobin 确定,是所有阶数足够大的平面图中的极值谱图,这意味着 和 的极值图都是 。在本文中,我们首先确定了 和 ,并描述了对于 、 和 足够大的唯一极值图。其次,我们得到了 和 的精确值,从而解决了 Li 对 的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信