E J Jelmy, Mathew Sunil, Chitra Kandappanthodi, P Rincy, K J Saji, Suresh C Pillai, Honey John
{"title":"Sustainable energy harvesting and breath sensing with electrospun triboelectric nylon-6","authors":"E J Jelmy, Mathew Sunil, Chitra Kandappanthodi, P Rincy, K J Saji, Suresh C Pillai, Honey John","doi":"10.1088/2515-7655/ad29fe","DOIUrl":null,"url":null,"abstract":"A high-performance triboelectric nanogenerator (TENG) has been developed for breath sensing applications, utilizing tribopositive electrospun nylon-6 nanofibers and tribonegative fluorinated ethylene propylene (FEP). The optimization toward the development of electrospun nylon-6-based TENG includes a range of factors such as the applied force and frequency on tribo responses, the thickness of the fiber mat, the concentration of nylon-6 in the fiber mats, and the selection of the tribonegative material for pairing with nylon-6 nanofiber. Among these parameters, the nanofiber prepared with 18 wt% nylon-6, characterized by a uniform fiber distribution, the highest surface area of 55.69 m<sup>2</sup> g<sup>−1</sup>, and an optimal thickness of 0.169 mm, demonstrated excellent TENG performance, among others. The TENG module constructed using nanofiber in a 4 cm<sup>2</sup> area showed the TENG responses of more than 30 <italic toggle=\"yes\">μ</italic>A short-circuit current, 200 V open-circuit voltage, and 90 nC charge when hand-pressed. It achieved a substantial power density of 890 mW m<sup>−2</sup> at 20 MΩ by applying a constant force of 10 N at a 10 Hz frequency. Charging a 1 <italic toggle=\"yes\">μ</italic>F capacitor to approximately 30.1 V in just 30 s highlights the potential of electrospun nylon-6 as a promising material for nanogenerator energy harvesting and sensing applications. The TENG device was found to be sufficient to power small, portable electronics such as LEDs and digital watch displays. A wearable belt was fabricated to showcase its breath-sensing capabilities by pairing it with FEP. The microcontroller connected to the TENG in the wearable belt is used to analyze the output produced through breathing patterns, subsequently activating a buzzer and LED by the nature of the breathing.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"25 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad29fe","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A high-performance triboelectric nanogenerator (TENG) has been developed for breath sensing applications, utilizing tribopositive electrospun nylon-6 nanofibers and tribonegative fluorinated ethylene propylene (FEP). The optimization toward the development of electrospun nylon-6-based TENG includes a range of factors such as the applied force and frequency on tribo responses, the thickness of the fiber mat, the concentration of nylon-6 in the fiber mats, and the selection of the tribonegative material for pairing with nylon-6 nanofiber. Among these parameters, the nanofiber prepared with 18 wt% nylon-6, characterized by a uniform fiber distribution, the highest surface area of 55.69 m2 g−1, and an optimal thickness of 0.169 mm, demonstrated excellent TENG performance, among others. The TENG module constructed using nanofiber in a 4 cm2 area showed the TENG responses of more than 30 μA short-circuit current, 200 V open-circuit voltage, and 90 nC charge when hand-pressed. It achieved a substantial power density of 890 mW m−2 at 20 MΩ by applying a constant force of 10 N at a 10 Hz frequency. Charging a 1 μF capacitor to approximately 30.1 V in just 30 s highlights the potential of electrospun nylon-6 as a promising material for nanogenerator energy harvesting and sensing applications. The TENG device was found to be sufficient to power small, portable electronics such as LEDs and digital watch displays. A wearable belt was fabricated to showcase its breath-sensing capabilities by pairing it with FEP. The microcontroller connected to the TENG in the wearable belt is used to analyze the output produced through breathing patterns, subsequently activating a buzzer and LED by the nature of the breathing.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.