J R Marín-Rueda, J F Valera-Jiménez, J M Ramos-Fajardo, I M Peláez-Tirado, S Tair, M Castro-García, J Canales-Vázquez, J C Pérez-Flores
{"title":"Evaluating 3D printed mesh geometries in ceramic LiB electrodes","authors":"J R Marín-Rueda, J F Valera-Jiménez, J M Ramos-Fajardo, I M Peláez-Tirado, S Tair, M Castro-García, J Canales-Vázquez, J C Pérez-Flores","doi":"10.1088/2515-7655/ad2497","DOIUrl":null,"url":null,"abstract":"Additive manufacturing techniques have the potential to promote a paradigmatic change in the electrode fabrication processes for lithium-ion batteries (LiBs) as they may offer alternative component designs to boost their performance or to customise the application. The present research work explores the use of low-cost fused filament fabrication (FFF) 3D printing to fabricate Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) mesh electrodes in the search for enlarged electrochemically active areas. Using different nozzle diameters (ND), we have 3D printed several mesh electrodes that after sintering allow an increase in the surface to volume ratio by up to ≈290% compared to conventional flat cylindrical geometries. As the conventional route to produce 3D printed meshes, i.e. stacking of consecutive layers with a 90° rotation, leads to problems of vertical misalignment that may affect the electrical contact, we have developed a new compact design that maximises the contact between layers. All the 3D printed mesh electrodes with thicknesses of 400 and 800 <italic toggle=\"yes\">μ</italic>m, exhibit electrochemical performance very close to those of thin (70 <italic toggle=\"yes\">μ</italic>m) electrodes, e.g. 175 mAh g<sup>−1</sup> at C/2 in the case of ND = 100 <italic toggle=\"yes\">μ</italic>m, which is the theoretical capacity value for LTO. At higher C-rates, 800 <italic toggle=\"yes\">μ</italic>m-thick mesh electrodes with larger ND exhibit a marked drop in the reversible capacity (28 mAh g<sup>−1</sup> at 8 C), although the values obtained improve notably those of the equivalent thick solid electrode (almost null at 8 C). The compact design demonstrated superior performance at high C-rates, improving by ≈70% the results of the best conventional mesh electrode at 8 C for 800 <italic toggle=\"yes\">μ</italic>m electrodes. These results highlight the potential of FFF-3D printing to generate novel high aspect ratio geometries and the impact of design and printing parameters on the performance of LiB electrode materials. Exploring alternative efficient geometries may facilitate the integration of thick electrodes in high energy density LiBs.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"20 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad2497","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing techniques have the potential to promote a paradigmatic change in the electrode fabrication processes for lithium-ion batteries (LiBs) as they may offer alternative component designs to boost their performance or to customise the application. The present research work explores the use of low-cost fused filament fabrication (FFF) 3D printing to fabricate Li4Ti5O12 (LTO) mesh electrodes in the search for enlarged electrochemically active areas. Using different nozzle diameters (ND), we have 3D printed several mesh electrodes that after sintering allow an increase in the surface to volume ratio by up to ≈290% compared to conventional flat cylindrical geometries. As the conventional route to produce 3D printed meshes, i.e. stacking of consecutive layers with a 90° rotation, leads to problems of vertical misalignment that may affect the electrical contact, we have developed a new compact design that maximises the contact between layers. All the 3D printed mesh electrodes with thicknesses of 400 and 800 μm, exhibit electrochemical performance very close to those of thin (70 μm) electrodes, e.g. 175 mAh g−1 at C/2 in the case of ND = 100 μm, which is the theoretical capacity value for LTO. At higher C-rates, 800 μm-thick mesh electrodes with larger ND exhibit a marked drop in the reversible capacity (28 mAh g−1 at 8 C), although the values obtained improve notably those of the equivalent thick solid electrode (almost null at 8 C). The compact design demonstrated superior performance at high C-rates, improving by ≈70% the results of the best conventional mesh electrode at 8 C for 800 μm electrodes. These results highlight the potential of FFF-3D printing to generate novel high aspect ratio geometries and the impact of design and printing parameters on the performance of LiB electrode materials. Exploring alternative efficient geometries may facilitate the integration of thick electrodes in high energy density LiBs.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.