Lixun Hou, Junqu Zhu, Qingcai Wang, Yi Lin, Xin Chang
{"title":"Non-stationary characteristics and structural optimization of CSR section under open-water condition","authors":"Lixun Hou, Junqu Zhu, Qingcai Wang, Yi Lin, Xin Chang","doi":"10.1007/s00773-024-00991-8","DOIUrl":null,"url":null,"abstract":"<p>To achieve energy conservation and improve ship maneuverability, a new type of collaborative spoiled rudder (CSR) is proposed by absorbing the advantages of existing ship rudders. This study investigates the non-stationary characteristics of the hydrodynamic forces of CSR section in depth, and carries out structural optimization based on numerical simulations. First, the effects of rudder angle and spoiler open angles on the non-stationary characteristics of the hydrodynamic forces of the CSR, and the appropriate maximum value of the spoiler open angle is determined. The results show that the unsteady pulsation amplitude of the hydrodynamic forces of the CSR is directly proportional to the spoiler open angle and inversely proportional to the rudder angle, and the upper limit of the spoiler open angle is set to 30°. Then, the hydrodynamic characteristics of the CSR with different spoiler widths are investigated in further. The maximum lift of the CSR increases as the spoiler width increases. The target lift method is used for efficiency evaluation. The ranges of the favorable rudder angle and the favorable spoiler open angle for different CSR configurations are determined, and the optimal spoiler width is further determined based on the non-stationary characteristics of the hydrodynamic forces.</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":"33 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-024-00991-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve energy conservation and improve ship maneuverability, a new type of collaborative spoiled rudder (CSR) is proposed by absorbing the advantages of existing ship rudders. This study investigates the non-stationary characteristics of the hydrodynamic forces of CSR section in depth, and carries out structural optimization based on numerical simulations. First, the effects of rudder angle and spoiler open angles on the non-stationary characteristics of the hydrodynamic forces of the CSR, and the appropriate maximum value of the spoiler open angle is determined. The results show that the unsteady pulsation amplitude of the hydrodynamic forces of the CSR is directly proportional to the spoiler open angle and inversely proportional to the rudder angle, and the upper limit of the spoiler open angle is set to 30°. Then, the hydrodynamic characteristics of the CSR with different spoiler widths are investigated in further. The maximum lift of the CSR increases as the spoiler width increases. The target lift method is used for efficiency evaluation. The ranges of the favorable rudder angle and the favorable spoiler open angle for different CSR configurations are determined, and the optimal spoiler width is further determined based on the non-stationary characteristics of the hydrodynamic forces.
期刊介绍:
The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.