Qiang Xu, Liping Xu, Linghui Meng, Yuyang Liu, Yinhui Bai
{"title":"Experimental study on fundamental frequency and human‐induced vibration characteristics of light steel foam concrete composite floor","authors":"Qiang Xu, Liping Xu, Linghui Meng, Yuyang Liu, Yinhui Bai","doi":"10.1002/tal.2096","DOIUrl":null,"url":null,"abstract":"SummaryIn order to study the dynamic characteristics and human‐induced vibration response of light steel foamed concrete composite floor (LCSF), the vibration characteristics of 4.2 m × 5 m LCSF model were tested under the condition of opposite side support, and the natural vibration frequency of LCSF was obtained. The orthogonal anisotropic elastic plate and the simulated beam element were used, respectively, to compute the natural vibration frequency of the LCSF, and the estimated findings were compared with those obtained from measurements. The discrepancy between the calculated results and the measured results of the approximate beam element using the natural vibration frequency calculation technique is around 13%, but the error for the plate element using the calculated results and the tested results is about 23%. To examine the floor's vibration response under the factors of step frequency, walking path, pedestrian density, and load distribution, the LCSF underwent a human‐induced vibration test. The test results show that the fundamental frequency of the LCSF specimen is about 11 Hz, which can meet the requirements of the specification. However, the vibration response of the LCSF specimen under different conditions of pedestrian load is significantly different. With the acceleration of step frequency and the increase and concentration of load, the floor's vibration response becomes more visible. In the route test, it is established that LCSF has the attribute of a unidirectional plate. The natural vibration frequency of similar floor slab can be calculated by the method of simulating the natural vibration frequency of beam element. The findings can serve as a guide for LCSF research and implementation.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryIn order to study the dynamic characteristics and human‐induced vibration response of light steel foamed concrete composite floor (LCSF), the vibration characteristics of 4.2 m × 5 m LCSF model were tested under the condition of opposite side support, and the natural vibration frequency of LCSF was obtained. The orthogonal anisotropic elastic plate and the simulated beam element were used, respectively, to compute the natural vibration frequency of the LCSF, and the estimated findings were compared with those obtained from measurements. The discrepancy between the calculated results and the measured results of the approximate beam element using the natural vibration frequency calculation technique is around 13%, but the error for the plate element using the calculated results and the tested results is about 23%. To examine the floor's vibration response under the factors of step frequency, walking path, pedestrian density, and load distribution, the LCSF underwent a human‐induced vibration test. The test results show that the fundamental frequency of the LCSF specimen is about 11 Hz, which can meet the requirements of the specification. However, the vibration response of the LCSF specimen under different conditions of pedestrian load is significantly different. With the acceleration of step frequency and the increase and concentration of load, the floor's vibration response becomes more visible. In the route test, it is established that LCSF has the attribute of a unidirectional plate. The natural vibration frequency of similar floor slab can be calculated by the method of simulating the natural vibration frequency of beam element. The findings can serve as a guide for LCSF research and implementation.