Assessment of damping and flexural behaviour of hybrid fibre-particulate composites

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Sergio Luiz Moni Ribeiro Filho, Carlos Thomas Garcia, Luís Miguel P Durão, André Luis Christoforo, Vaclav Ondra, Márcio Eduardo Silveira, Tulio Hallak Panzera, Fabrizio Scarpa
{"title":"Assessment of damping and flexural behaviour of hybrid fibre-particulate composites","authors":"Sergio Luiz Moni Ribeiro Filho, Carlos Thomas Garcia, Luís Miguel P Durão, André Luis Christoforo, Vaclav Ondra, Márcio Eduardo Silveira, Tulio Hallak Panzera, Fabrizio Scarpa","doi":"10.1177/00219983241237359","DOIUrl":null,"url":null,"abstract":"Hybrid composites are an advanced solution that offers multifunctional capabilities, including exceptional strength-to-weight ratios, vibrational damping and impact absorption. This work describes the damping capacity and flexural behaviour of a hybrid fibrous-particulate system composed of glass/carbon fabrics and three distinct micro-inclusions: silica particles, carbon waste microfibres, and cement. A statistical methodology based on the full factorial design is applied to identify the effects of fibre stacking sequence, including carbon-C<jats:sub>5</jats:sub>, glass-G<jats:sub>5</jats:sub>, C<jats:sub>2</jats:sub>G<jats:sub>3</jats:sub>, G<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>, GCGCG and CG<jats:sub>3</jats:sub>C, microparticle inclusions and matrix/fibre volume fraction (40/60 and 60/40) on damping and bending responses. A non-linear finite element (FE) analysis is conducted to explore the stress distribution based on the stacking sequence and predict the failure mechanisms of the hybrid laminate. The results indicate significant interaction effects, with hybrid architectures showcasing approximately 33% higher performance compared to glass fibre composites. A greater dependence on the fibre layup sequence is found for the damping factor, flexural modulus and strength. Notably, the incorporation of silica microparticles leads to an increase in flexural strength. Furthermore, a greater volume fraction of the matrix phase enhances the rheological efficiency in terms of the fibre-particle interface. Carbon fibre layers placed symmetrically on both beam sides (CG<jats:sub>3</jats:sub>C) and bottom layers (G<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>) significantly enhance the bending performance of hybrid composites.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241237359","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid composites are an advanced solution that offers multifunctional capabilities, including exceptional strength-to-weight ratios, vibrational damping and impact absorption. This work describes the damping capacity and flexural behaviour of a hybrid fibrous-particulate system composed of glass/carbon fabrics and three distinct micro-inclusions: silica particles, carbon waste microfibres, and cement. A statistical methodology based on the full factorial design is applied to identify the effects of fibre stacking sequence, including carbon-C5, glass-G5, C2G3, G3C2, GCGCG and CG3C, microparticle inclusions and matrix/fibre volume fraction (40/60 and 60/40) on damping and bending responses. A non-linear finite element (FE) analysis is conducted to explore the stress distribution based on the stacking sequence and predict the failure mechanisms of the hybrid laminate. The results indicate significant interaction effects, with hybrid architectures showcasing approximately 33% higher performance compared to glass fibre composites. A greater dependence on the fibre layup sequence is found for the damping factor, flexural modulus and strength. Notably, the incorporation of silica microparticles leads to an increase in flexural strength. Furthermore, a greater volume fraction of the matrix phase enhances the rheological efficiency in terms of the fibre-particle interface. Carbon fibre layers placed symmetrically on both beam sides (CG3C) and bottom layers (G3C2) significantly enhance the bending performance of hybrid composites.
评估混合纤维-颗粒复合材料的阻尼和弯曲性能
混合复合材料是一种先进的解决方案,具有多种功能,包括优异的强度重量比、振动阻尼和冲击吸收。这项研究描述了由玻璃/碳纤维织物和三种不同的微夹杂物(二氧化硅颗粒、碳废料微纤维和水泥)组成的混合纤维颗粒系统的阻尼能力和弯曲行为。应用基于全因子设计的统计方法来确定纤维堆叠顺序(包括碳-C5、玻璃-G5、C2G3、G3C2、GCGCG 和 CG3C)、微粒夹杂物和基体/纤维体积分数(40/60 和 60/40)对阻尼和弯曲响应的影响。我们进行了非线性有限元(FE)分析,以探讨基于堆叠顺序的应力分布,并预测混合层压板的破坏机制。结果表明,混合结构与玻璃纤维复合材料相比,具有明显的相互作用效应,性能提高了约 33%。在阻尼系数、弯曲模量和强度方面,发现纤维铺层顺序的依赖性更大。值得注意的是,二氧化硅微粒的加入会导致弯曲强度的增加。此外,基体相的体积分数越大,纤维-颗粒界面的流变效率就越高。对称放置在梁两侧(CG3C)和底层(G3C2)的碳纤维层显著提高了混合复合材料的弯曲性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信