{"title":"High-dimensional sparse single–index regression via Hilbert–Schmidt independence criterion","authors":"Xin Chen, Chang Deng, Shuaida He, Runxiong Wu, Jia Zhang","doi":"10.1007/s11222-024-10399-4","DOIUrl":null,"url":null,"abstract":"<p>Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to the field of single-index models to estimate the directions. Compared with other well-established methods, the HSIC based method requires relatively weak conditions. However, its performance has not yet been studied in the prevalent high-dimensional scenarios, where the number of covariates can be much larger than the sample size. In this article, based on HSIC, we propose to estimate the possibly sparse directions in the high-dimensional single-index models through a parameter reformulation. Our approach estimates the subspace of the direction directly and performs variable selection simultaneously. Due to the non-convexity of the objective function and the complexity of the constraints, a majorize-minimize algorithm together with the linearized alternating direction method of multipliers is developed to solve the optimization problem. Since it does not involve the inverse of the covariance matrix, the algorithm can naturally handle large <i>p</i> small <i>n</i> scenarios. Through extensive simulation studies and a real data analysis, we show that our proposal is efficient and effective in the high-dimensional settings. The <span>\\(\\texttt {Matlab}\\)</span> codes for this method are available online.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10399-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Hilbert-Schmidt Independence Criterion (HSIC) has recently been introduced to the field of single-index models to estimate the directions. Compared with other well-established methods, the HSIC based method requires relatively weak conditions. However, its performance has not yet been studied in the prevalent high-dimensional scenarios, where the number of covariates can be much larger than the sample size. In this article, based on HSIC, we propose to estimate the possibly sparse directions in the high-dimensional single-index models through a parameter reformulation. Our approach estimates the subspace of the direction directly and performs variable selection simultaneously. Due to the non-convexity of the objective function and the complexity of the constraints, a majorize-minimize algorithm together with the linearized alternating direction method of multipliers is developed to solve the optimization problem. Since it does not involve the inverse of the covariance matrix, the algorithm can naturally handle large p small n scenarios. Through extensive simulation studies and a real data analysis, we show that our proposal is efficient and effective in the high-dimensional settings. The \(\texttt {Matlab}\) codes for this method are available online.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.