Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin
{"title":"Influence of transient heat pulse on heat transfer performance of vapor chamber with different filling ratios","authors":"Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin","doi":"10.1615/jenhheattransf.2024051508","DOIUrl":null,"url":null,"abstract":"Due to the different application for portable electronic devices, there are instantaneous changes in the thermal load of the CPU and battery in the operation. The traditional uniform structure wick can not allow for evaporation and reflow of the working fluid under complex conditions, hence reducing the heat transfer performance of the vapor chamber (VC). This paper puts forward a novel style of VC to overcome the difficulty of heat export for electronic devices with dual heat sources. The wick with gradient structure in heat source zone and reflow zone was made by the method of zonal sintering, which could effectively promote the evaporation and reflow of working fluid with multi-heating sources and complex conditions. The influence of step heating condition and pulse heating condition on the heat transfer performance of the VC with various filling ratios was analyzed. The results showed that under the step heating condition, the best heat transfer performance of the VC was achieved at a filling ratio of approximately 90%, with a minimum thermal resistance of only 0.31 oC/W at 45 W. Under the pulse heating condition, in order to significantly reduce the temperature hysteretic effect of the VC, a gradient structure core was sintered in different regions, and the maximum hysteretic temperature was 2.7 oC when the filling ratio wass 80% and 100%. The temperature lag could be effectively eliminated when the filling ratio was 90%. The results of the research supplied a theoretical basis for the design and testing of VC under complex working conditions and the development of efficient heat transfer elements.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jenhheattransf.2024051508","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the different application for portable electronic devices, there are instantaneous changes in the thermal load of the CPU and battery in the operation. The traditional uniform structure wick can not allow for evaporation and reflow of the working fluid under complex conditions, hence reducing the heat transfer performance of the vapor chamber (VC). This paper puts forward a novel style of VC to overcome the difficulty of heat export for electronic devices with dual heat sources. The wick with gradient structure in heat source zone and reflow zone was made by the method of zonal sintering, which could effectively promote the evaporation and reflow of working fluid with multi-heating sources and complex conditions. The influence of step heating condition and pulse heating condition on the heat transfer performance of the VC with various filling ratios was analyzed. The results showed that under the step heating condition, the best heat transfer performance of the VC was achieved at a filling ratio of approximately 90%, with a minimum thermal resistance of only 0.31 oC/W at 45 W. Under the pulse heating condition, in order to significantly reduce the temperature hysteretic effect of the VC, a gradient structure core was sintered in different regions, and the maximum hysteretic temperature was 2.7 oC when the filling ratio wass 80% and 100%. The temperature lag could be effectively eliminated when the filling ratio was 90%. The results of the research supplied a theoretical basis for the design and testing of VC under complex working conditions and the development of efficient heat transfer elements.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.