Galois closures and elementary components of Hilbert schemes of points

Matthew Satriano, Andrew P. Staal
{"title":"Galois closures and elementary components of Hilbert schemes of points","authors":"Matthew Satriano, Andrew P. Staal","doi":"10.1007/s00029-024-00915-9","DOIUrl":null,"url":null,"abstract":"<p>Bhargava and the first-named author of this paper introduced a functorial Galois closure operation for finite-rank ring extensions, generalizing constructions of Grothendieck and Katz–Mazur. In this paper, we generalize Galois closures and apply them to construct a new infinite family of irreducible components of Hilbert schemes of points. We show that these components are elementary, in the sense that they parametrize algebras supported at a point. Furthermore, we produce secondary families of elementary components obtained from Galois closures by modding out by suitable socle elements.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00915-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bhargava and the first-named author of this paper introduced a functorial Galois closure operation for finite-rank ring extensions, generalizing constructions of Grothendieck and Katz–Mazur. In this paper, we generalize Galois closures and apply them to construct a new infinite family of irreducible components of Hilbert schemes of points. We show that these components are elementary, in the sense that they parametrize algebras supported at a point. Furthermore, we produce secondary families of elementary components obtained from Galois closures by modding out by suitable socle elements.

点的希尔伯特方案的伽罗瓦闭包和基本组成部分
Bhargava 和本文第一作者引入了有限秩环扩展的函数式伽罗瓦闭合操作,概括了格罗滕迪克和卡茨-马祖尔的构造。在本文中,我们概括了伽罗瓦闭合运算,并将其应用于构建一个新的点的希尔伯特方案的不可还原成分的无穷族。我们证明了这些分量是初等的,即它们是在点上支持的代数的参数。此外,我们还通过对合适的社会元素进行模化,产生了从伽罗瓦闭包得到的基本分量的二级族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信