Approximating Higher-Order Derivative Tensors Using Secant Updates

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Karl Welzel, Raphael A. Hauser
{"title":"Approximating Higher-Order Derivative Tensors Using Secant Updates","authors":"Karl Welzel, Raphael A. Hauser","doi":"10.1137/23m1549687","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 893-917, March 2024. <br/> Abstract. Quasi-Newton methods employ an update rule that gradually improves the Hessian approximation using the already available gradient evaluations. We propose higher-order secant updates which generalize this idea to higher-order derivatives, approximating, for example, third derivatives (which are tensors) from given Hessian evaluations. Our generalization is based on the observation that quasi-Newton updates are least-change updates satisfying the secant equation, with different methods using different norms to measure the size of the change. We present a full characterization for least-change updates in weighted Frobenius norms (satisfying an analogue of the secant equation) for derivatives of arbitrary order. Moreover, we establish convergence of the approximations to the true derivative under standard assumptions and explore the quality of the generated approximations in numerical experiments.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1549687","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 893-917, March 2024.
Abstract. Quasi-Newton methods employ an update rule that gradually improves the Hessian approximation using the already available gradient evaluations. We propose higher-order secant updates which generalize this idea to higher-order derivatives, approximating, for example, third derivatives (which are tensors) from given Hessian evaluations. Our generalization is based on the observation that quasi-Newton updates are least-change updates satisfying the secant equation, with different methods using different norms to measure the size of the change. We present a full characterization for least-change updates in weighted Frobenius norms (satisfying an analogue of the secant equation) for derivatives of arbitrary order. Moreover, we establish convergence of the approximations to the true derivative under standard assumptions and explore the quality of the generated approximations in numerical experiments.
利用 Secant 更新逼近高阶微分张量
SIAM 优化期刊》,第 34 卷,第 1 期,第 893-917 页,2024 年 3 月。 摘要。准牛顿方法采用一种更新规则,利用已有的梯度评估逐步改进赫塞斯近似值。我们提出的高阶正割更新将这一思想推广到高阶导数,例如,从给定的 Hessian 评估中逼近三阶导数(三阶导数是张量)。我们的概括基于以下观察:准牛顿更新是满足secant方程的最小变化更新,不同的方法使用不同的规范来衡量变化的大小。对于任意阶的导数,我们提出了加权弗罗贝尼斯规范(满足secant方程的类似方法)中最小变化更新的完整特征。此外,我们还确定了在标准假设下近似值对真实导数的收敛性,并在数值实验中探索了生成的近似值的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信