The electroweak monopole–antimonopole pair in the standard model

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Dan Zhu, Khai-Ming Wong, Guo-Quan Wong
{"title":"The electroweak monopole–antimonopole pair in the standard model","authors":"Dan Zhu, Khai-Ming Wong, Guo-Quan Wong","doi":"10.1088/1572-9494/ad23dd","DOIUrl":null,"url":null,"abstract":"We present the first numerical solution that corresponds to a pair of Cho–Maison monopoles and antimonopoles (MAPs) in the SU(2) × U(1) Weinberg–Salam (WS) theory. The monopoles are finitely separated, while each pole carries a magnetic charge ±4<italic toggle=\"yes\">π</italic>/<italic toggle=\"yes\">e</italic>. The positive pole is situated in the upper hemisphere, whereas the negative pole is in the lower hemisphere. The Cho–Maison MAP is investigated for a range of Weinberg angles, <inline-formula>\n<tex-math>\n<?CDATA $0.4675\\leqslant \\tan {\\theta }_{{\\rm{W}}}\\leqslant 10$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>0.4675</mml:mn><mml:mo>≤</mml:mo><mml:mi>tan</mml:mi><mml:msub><mml:mrow><mml:mi>θ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">W</mml:mi></mml:mrow></mml:msub><mml:mo>≤</mml:mo><mml:mn>10</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ctpad23ddieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, and Higgs self-coupling, 0 ≤ <italic toggle=\"yes\">β</italic> ≤ 1.7704. The magnetic dipole moment (<italic toggle=\"yes\">μ</italic>\n<sub>m</sub>) and pole separation (<italic toggle=\"yes\">d</italic>\n<sub>\n<italic toggle=\"yes\">z</italic>\n</sub>) of the numerical solutions are calculated and analyzed. The total energy of the system, however, is infinite due to point singularities at the locations of monopoles.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad23dd","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present the first numerical solution that corresponds to a pair of Cho–Maison monopoles and antimonopoles (MAPs) in the SU(2) × U(1) Weinberg–Salam (WS) theory. The monopoles are finitely separated, while each pole carries a magnetic charge ±4π/e. The positive pole is situated in the upper hemisphere, whereas the negative pole is in the lower hemisphere. The Cho–Maison MAP is investigated for a range of Weinberg angles, 0.4675tanθW10 , and Higgs self-coupling, 0 ≤ β ≤ 1.7704. The magnetic dipole moment (μ m) and pole separation (d z ) of the numerical solutions are calculated and analyzed. The total energy of the system, however, is infinite due to point singularities at the locations of monopoles.
标准模型中的电弱单极子-反单极子对
我们首次提出了与 SU(2) × U(1) 温伯格-萨拉姆(WS)理论中一对 Cho-Maison 单极和反单极(MAPs)相对应的数值解。单极是有限分离的,而每个极都带有±4π/e的磁荷。正极位于上半球,而负极位于下半球。在温伯格角(0.4675≤tanθW≤10)和希格斯自耦合(0≤β≤1.7704)的范围内,研究了乔-迈松 MAP。计算并分析了数值解的磁偶极矩(μm)和磁极分离(dz)。然而,由于单极位置的点奇异性,系统的总能量是无限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信