High Gain Diagonally-Probe-Fed Multi-Layered Dielectric Resonator Antenna Array for 77 GHz Automotive Radar Applications

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sung Yong An, Boumseock Kim
{"title":"High Gain Diagonally-Probe-Fed Multi-Layered Dielectric Resonator Antenna Array for 77 GHz Automotive Radar Applications","authors":"Sung Yong An, Boumseock Kim","doi":"10.1007/s10762-024-00978-x","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a high gain diagonally-probe-fed multi-layered dielectric resonator antenna (DPF-ML-DRA) designed for 77 GHz automotive radar applications. A comparison with the conventional probe-fed ML-DRA demonstrates that the proposed DPF-ML-DRA achieves higher antenna gain by 1 dB. The sub-array utilizing the proposed DPF-ML-DRA is tailored to meet specific radar system requirements, including a broad impedance bandwidth (&gt; 5 GHz), high antenna gain (&gt; 12 dBi), and wide half-power beamwidth (&gt; ± 60°). Simulated results validate that the sub-array performance meets the aforementioned antenna requirements. To attain high azimuthal and elevational angular detecting resolution, 3 sub-arrays with 12 DF-ML-DRA for the Tx channel and 4 sub-arrays with 10 DF-ML-DRA for the Rx channel were designed and simulated. The fabricated radar system underwent field testing, demonstrating a maximum range of up to 160 m and a field of view of 120° for 100 m. Remarkably, the proposed DPF-ML-DRA exhibits equivalent radar performance while featuring a smaller form-factor compared to commercially available state-of-the-art automotive radar systems. Consequently, the proposed DPF-ML-DRA proves to be well-suited for 77 GHz automotive radar applications.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"74 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00978-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a high gain diagonally-probe-fed multi-layered dielectric resonator antenna (DPF-ML-DRA) designed for 77 GHz automotive radar applications. A comparison with the conventional probe-fed ML-DRA demonstrates that the proposed DPF-ML-DRA achieves higher antenna gain by 1 dB. The sub-array utilizing the proposed DPF-ML-DRA is tailored to meet specific radar system requirements, including a broad impedance bandwidth (> 5 GHz), high antenna gain (> 12 dBi), and wide half-power beamwidth (> ± 60°). Simulated results validate that the sub-array performance meets the aforementioned antenna requirements. To attain high azimuthal and elevational angular detecting resolution, 3 sub-arrays with 12 DF-ML-DRA for the Tx channel and 4 sub-arrays with 10 DF-ML-DRA for the Rx channel were designed and simulated. The fabricated radar system underwent field testing, demonstrating a maximum range of up to 160 m and a field of view of 120° for 100 m. Remarkably, the proposed DPF-ML-DRA exhibits equivalent radar performance while featuring a smaller form-factor compared to commercially available state-of-the-art automotive radar systems. Consequently, the proposed DPF-ML-DRA proves to be well-suited for 77 GHz automotive radar applications.

Abstract Image

用于 77 GHz 汽车雷达应用的高增益对角探针馈电多层介质谐振器天线阵列
本文介绍了一种为 77 GHz 汽车雷达应用而设计的高增益对角探针馈电多层介质谐振器天线(DPF-ML-DRA)。与传统的探针馈电多层介质谐振器天线相比,DPF-ML-DRA 的天线增益提高了 1 dB。采用拟议的 DPF-ML-DRA 的子阵列可满足特定雷达系统的要求,包括宽阻抗带宽(> 5 GHz)、高天线增益(> 12 dBi)和宽半功率波束宽度(> ± 60°)。仿真结果验证了该子阵列的性能符合上述天线要求。为了达到较高的方位角和仰角探测分辨率,设计并仿真了 3 个子阵列,其中 12 个 DF-ML-DRA 用于 Tx 信道,4 个子阵列,其中 10 个 DF-ML-DRA 用于 Rx 信道。所制造的雷达系统进行了现场测试,结果表明其最大探测距离可达 160 米,100 米内的视场角为 120°。因此,拟议的 DPF-ML-DRA 非常适合 77 GHz 汽车雷达应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信