Isoperimetric inequalities for real-valued functions with applications to monotonicity testing

Hadley Black, Iden Kalemaj, Sofya Raskhodnikova
{"title":"Isoperimetric inequalities for real-valued functions with applications to monotonicity testing","authors":"Hadley Black, Iden Kalemaj, Sofya Raskhodnikova","doi":"10.1002/rsa.21211","DOIUrl":null,"url":null,"abstract":"We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions <mjx-container aria-label=\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,1,13\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"sequence\" data-semantic-speech=\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"14\" data-semantic-role=\"colon\" data-semantic-type=\"punctuation\" rspace=\"2\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"10,12\" data-semantic-content=\"11\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"arrow\" data-semantic-type=\"relseq\"><mjx-msup data-semantic-children=\"8,9\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"set collection\" data-semantic-type=\"superscript\"><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"set collection\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: 0.477em;\"><mjx-mrow size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"13\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/bdffdf9d-54fa-42c8-865a-92210048e095/rsa21211-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,1,13\" data-semantic-content=\"1\" data-semantic-role=\"sequence\" data-semantic-speech=\"f colon StartSet 0 comma 1 EndSet Superscript d Baseline right arrow double struck upper R\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">f</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"14\" data-semantic-role=\"colon\" data-semantic-type=\"punctuation\">:</mo><mrow data-semantic-=\"\" data-semantic-children=\"10,12\" data-semantic-content=\"11\" data-semantic-parent=\"14\" data-semantic-role=\"arrow\" data-semantic-type=\"relseq\"><msup data-semantic-=\"\" data-semantic-children=\"8,9\" data-semantic-parent=\"13\" data-semantic-role=\"set collection\" data-semantic-type=\"superscript\"><mrow data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic-parent=\"10\" data-semantic-role=\"set collection\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">{</mo><mrow data-semantic-=\"\" data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">}</mo></mrow><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow></msup><mo data-semantic-=\"\" data-semantic-operator=\"relseq,→\" data-semantic-parent=\"13\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\">→</mo><mi data-semantic-=\"\" data-semantic-font=\"double-struck\" data-semantic-parent=\"13\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\">ℝ</mi></mrow></mrow>$$ f:{\\left\\{0,1\\right\\}}^d\\to \\mathbb{R} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function <mjx-container aria-label=\"f\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/186b4de7-db42-44c7-8297-f7d62e69170a/rsa21211-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of <mjx-container aria-label=\"f\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/e41d3691-5a77-4c6a-a619-d244b80e4e09/rsa21211-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to monotonicity and the structure of violations of <mjx-container aria-label=\"f\" ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/944f72e7-676c-46a2-a9c6-748d2092018c/rsa21211-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\">f</mi></mrow>$$ f $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity <mjx-container aria-label=\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\" ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,19\" data-semantic-content=\"20,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\" data-semantic-type=\"appl\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"simple function\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.105em; padding-left: 0.465em; margin-bottom: -0.597em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.278em;\"><mjx-c></mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"2\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"21\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"18\" data-semantic-content=\"3,12\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,16\" data-semantic-content=\"17,4\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"limit function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"limit function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"15\" data-semantic-content=\"5,11\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"14,9,10\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"13\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\"7\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.156em;\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/9a7a7f4c-8c16-43fe-a078-f7f07aa3aa4d/rsa21211-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,19\" data-semantic-content=\"20,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"ModifyingAbove upper O With tilde left parenthesis min left parenthesis r StartRoot d EndRoot comma d right parenthesis right parenthesis\" data-semantic-type=\"appl\"><mover accent=\"true\" data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"21\" data-semantic-role=\"simple function\" data-semantic-type=\"overscore\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"2\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi></mrow><mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\">˜</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"21\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"18\" data-semantic-content=\"3,12\" data-semantic-parent=\"21\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,16\" data-semantic-content=\"17,4\" data-semantic-parent=\"19\" data-semantic-role=\"limit function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"limit function\" data-semantic-type=\"function\">min</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"18\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"15\" data-semantic-content=\"5,11\" data-semantic-parent=\"18\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"14,9,10\" data-semantic-content=\"9\" data-semantic-parent=\"16\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"6,8\" data-semantic-content=\"13\" data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">r</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><msqrt data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow></msqrt></mrow><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"15\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"16\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"19\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ \\tilde{O}\\left(\\min \\left(r\\sqrt{d},d\\right)\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, where <mjx-container aria-label=\"r\" ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/bf1bbdf8-215d-4cb4-af90-c8c6d2fcec27/rsa21211-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"r\" data-semantic-type=\"identifier\">r</mi></mrow>$$ r $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> is the size of the image of the input function. (The best previously known tester makes <mjx-container aria-label=\"upper O left parenthesis d right parenthesis\" ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/3dbf39bb-2d04-4da4-9816-b92ac1474d9b/rsa21211-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ O(d) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are <mjx-container aria-label=\"alpha\" ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/182f8380-3c47-44b5-8f5f-8d35c014cb8a/rsa21211-math-0008.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi></mrow>$$ \\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-far from monotone can be approximated nonadaptively within a factor of <mjx-container aria-label=\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\" ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,11\" data-semantic-content=\"12,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"1,10\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msqrt data-semantic-children=\"8\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.158em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,6\" data-semantic-content=\"7\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"5,3\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-box></mjx-sqrt></mjx-msqrt><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/6c5a1586-1e6e-4579-b346-9165073a4659/rsa21211-math-0009.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,11\" data-semantic-content=\"12,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis StartRoot d log d EndRoot right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"1,10\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><msqrt data-semantic-=\"\" data-semantic-children=\"8\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,6\" data-semantic-content=\"7\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"5,3\" data-semantic-parent=\"8\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">log</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi></mrow></mrow></msqrt><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ O\\left(\\sqrt{d\\log d}\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> with query complexity polynomial in <mjx-container aria-label=\"1 divided by alpha\" ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"division\" data-semantic-speech=\"1 divided by alpha\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/4fdd2bb6-65a3-49d3-aa08-980985e1a5ca/rsa21211-math-0010.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"division\" data-semantic-speech=\"1 divided by alpha\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi></mrow>$$ 1/\\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the dimension <mjx-container aria-label=\"d\" ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/767d7501-04f9-4d67-bfaa-e5675b2fb4b0/rsa21211-math-0011.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\">d</mi></mrow>$$ d $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This query complexity is nearly optimal for nonadaptive algorithms even for the special case of Boolean functions (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves <mjx-container aria-label=\"upper O left parenthesis d log r right parenthesis\" ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,10\" data-semantic-content=\"11,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d log r right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"1,5\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,7\" data-semantic-content=\"8\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"6,3\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/fe3b6363-88d6-416a-b6e3-e60c49136485/rsa21211-math-0012.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,10\" data-semantic-content=\"11,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper O left parenthesis d log r right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">O</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"12\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"1,5\" data-semantic-parent=\"12\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,7\" data-semantic-content=\"8\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"3,4\" data-semantic-content=\"6,3\" data-semantic-parent=\"9\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\">log</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">r</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ O\\left(d\\log r\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-approximation.).","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018) for Boolean functions to the case of real-valued functions . Our main tool in the proof of the generalized inequality is a new Boolean decomposition that represents every real-valued function over an arbitrary partially ordered domain as a collection of Boolean functions over the same domain, roughly capturing the distance of to monotonicity and the structure of violations of to monotonicity. We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity has query complexity , where is the size of the image of the input function. (The best previously known tester makes queries, as shown by Chakrabarty and Seshadhri (STOC 2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity of real-valued functions that are -far from monotone can be approximated nonadaptively within a factor of with query complexity polynomial in and the dimension . This query complexity is nearly optimal for nonadaptive algorithms even for the special case of Boolean functions (The best previously known distance approximation algorithm for real-valued functions, by Fattal and Ron (TALG 2010) achieves -approximation.).
实值函数等周不等式及其在单调性检验中的应用
我们将 Khot、Minzer 和 Safra(SICOMP 2018)针对布尔函数的著名等周不等式推广到实值函数 f:{0,1}d→ℝ$$ f:{\left\{0,1\right}}^d\to \mathbb{R} $$的情况。我们证明广义不等式的主要工具是一种新的布尔分解,它将任意部分有序域上的每个实值函数 f$$ f $$ 表示为同一域上布尔函数的集合,大致捕捉了 f$$ f $$ 与单调性的距离以及 f$$ f $$ 违反单调性的结构。我们应用广义等周不等式来改进实值函数单调性测试和单调性距离近似的算法。我们的单调性测试器的查询复杂度为 O˜(min(rd,d))$$ \tilde{O}\left(\min \left(r\sqrt{d},d\right)\right) $$,其中 r$$ r$$ 是输入函数图像的大小。(如 Chakrabarty 和 Seshadhri(STOC 2013)所示,之前已知的最佳测试器的查询次数为 O(d)$$ O(d) $$)。我们的测试器是非自适应的,而且有单边误差。我们证明了单调性非自适应、单边误差测试器的匹配下限。我们还证明,距离单调性很远(α$$ \alpha $$ )的实值函数的单调性距离可以在 O(dlogd)$$ O\left(\sqrt{d\log d}\right) $$ 因数内非自适应地近似,查询复杂度为 1/α$$ 1/ \alpha $$ 和维度 d$$ d $$的多项式。即使对于布尔函数的特殊情况,这一查询复杂度也几乎是非自适应算法的最优值(之前已知的最好的实值函数距离逼近算法,由 Fattal 和 Ron(TALG 2010)实现了 O(dlogr)$$ O\left(d\log r\right) $$ 的逼近)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信