{"title":"On thermal transition in QCD","authors":"Masanori Hanada, Hiromasa Watanabe","doi":"10.1093/ptep/ptae033","DOIUrl":null,"url":null,"abstract":"We describe how the general mechanism of partial deconfinement applies to large-N QCD and the partially-deconfined phase inevitably appears between completely-confined and completely-deconfined phases. Furthermore, we propose how the partial deconfinement can be observed in the real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence, we clarify the meaning of the Polyakov loop in QCD at large N and finite N. Both at large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially-deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"45 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae033","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We describe how the general mechanism of partial deconfinement applies to large-N QCD and the partially-deconfined phase inevitably appears between completely-confined and completely-deconfined phases. Furthermore, we propose how the partial deconfinement can be observed in the real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence, we clarify the meaning of the Polyakov loop in QCD at large N and finite N. Both at large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially-deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.