Why Attention Graphs Are All We Need: Pioneering Hierarchical Classification of Hematologic Cell Populations with LeukoGraph

Fatemeh Nassajian Mojarrad, Lorenzo Bini, Thomas Matthes, Stéphane Marchand-Maillet
{"title":"Why Attention Graphs Are All We Need: Pioneering Hierarchical Classification of Hematologic Cell Populations with LeukoGraph","authors":"Fatemeh Nassajian Mojarrad, Lorenzo Bini, Thomas Matthes, Stéphane Marchand-Maillet","doi":"arxiv-2402.18610","DOIUrl":null,"url":null,"abstract":"In the complex landscape of hematologic samples such as peripheral blood or\nbone marrow, cell classification, delineating diverse populations into a\nhierarchical structure, presents profound challenges. This study presents\nLeukoGraph, a recently developed framework designed explicitly for this purpose\nemploying graph attention networks (GATs) to navigate hierarchical\nclassification (HC) complexities. Notably, LeukoGraph stands as a pioneering\neffort, marking the application of graph neural networks (GNNs) for\nhierarchical inference on graphs, accommodating up to one million nodes and\nmillions of edges, all derived from flow cytometry data. LeukoGraph intricately\naddresses a classification paradigm where for example four different cell\npopulations undergo flat categorization, while a fifth diverges into two\ndistinct child branches, exemplifying the nuanced hierarchical structure\ninherent in complex datasets. The technique is more general than this example.\nA hallmark achievement of LeukoGraph is its F-score of 98%, significantly\noutclassing prevailing state-of-the-art methodologies. Crucially, LeukoGraph's\nprowess extends beyond theoretical innovation, showcasing remarkable precision\nin predicting both flat and hierarchical cell types across flow cytometry\ndatasets from 30 distinct patients. This precision is further underscored by\nLeukoGraph's ability to maintain a correct label ratio, despite the inherent\nchallenges posed by hierarchical classifications.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.18610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the complex landscape of hematologic samples such as peripheral blood or bone marrow, cell classification, delineating diverse populations into a hierarchical structure, presents profound challenges. This study presents LeukoGraph, a recently developed framework designed explicitly for this purpose employing graph attention networks (GATs) to navigate hierarchical classification (HC) complexities. Notably, LeukoGraph stands as a pioneering effort, marking the application of graph neural networks (GNNs) for hierarchical inference on graphs, accommodating up to one million nodes and millions of edges, all derived from flow cytometry data. LeukoGraph intricately addresses a classification paradigm where for example four different cell populations undergo flat categorization, while a fifth diverges into two distinct child branches, exemplifying the nuanced hierarchical structure inherent in complex datasets. The technique is more general than this example. A hallmark achievement of LeukoGraph is its F-score of 98%, significantly outclassing prevailing state-of-the-art methodologies. Crucially, LeukoGraph's prowess extends beyond theoretical innovation, showcasing remarkable precision in predicting both flat and hierarchical cell types across flow cytometry datasets from 30 distinct patients. This precision is further underscored by LeukoGraph's ability to maintain a correct label ratio, despite the inherent challenges posed by hierarchical classifications.
为什么我们只需要注意图?利用 LeukoGraph 率先对血液细胞群进行分级分类
在外周血或骨髓等血液样本的复杂环境中,细胞分类、将不同种群划分为层次结构等工作面临着巨大挑战。本研究介绍了LeukoGraph,它是最近开发的一个框架,专门为此目的而设计,采用图注意网络(GAT)来驾驭分层分类(HC)的复杂性。值得注意的是,LeukoGraph 是一项开创性的工作,它标志着图神经网络(GNN)在图层次推断中的应用,可容纳多达一百万个节点和数百万条边,所有这些都来自流式细胞仪数据。LeukoGraph复杂地处理了一个分类范例,例如,四个不同的细胞群进行平面分类,而第五个细胞群则分化为两个不同的子分支,体现了复杂数据集中固有的细微层次结构。LeukoGraph 的一个标志性成就是它的 F 分数高达 98%,大大超过了目前最先进的方法。最重要的是,LeukoGraph 的优势不仅限于理论创新,它在预测来自 30 位不同患者的流式细胞仪数据集中的扁平和分层细胞类型方面都表现出了非凡的精确性。LeukoGraph 还能保持正确的标记比例,这进一步突出了它的精确性,尽管分层分类本身就存在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信