Ming Che, Hanwei Chen, Bo Li, Haruichi Kanaya, Kazutoshi Kato
{"title":"Photonic THz Beam Steering Using Fiber Chromatic Dispersion","authors":"Ming Che, Hanwei Chen, Bo Li, Haruichi Kanaya, Kazutoshi Kato","doi":"10.1007/s10762-024-00975-0","DOIUrl":null,"url":null,"abstract":"<p>THz technology has the potential to revolutionize various fields, including high-speed wireless communication, medical imaging, and spectroscopy. One challenge facing THz technology, however, is the limited output power (on the order of microwatts) of photonic THz sources (e.g., uni-traveling-carrier photodiode). Researchers are therefore exploring THz beam steering techniques to maximize their power effectiveness. To this end, we propose a photonic THz beam steering method that utilizes fiber chromatic dispersion, eliminating the need for energy-consuming active electronics. This paper explains its basic operating principle, fabrication and performance analysis of the associated THz array antenna, and demonstrates the feasibility of achieving a 300 GHz beam steering within 10<span>\\(^\\circ \\)</span> by means of dispersion-varied polarization-maintaining fibers. In conclusion, the present scheme can greatly enhance the power efficiency of photonic THz sources, and enable the potential advantages of seamless integration with fiber-optic networks, including reduced complexity, simplified operation, low power consumption, and cost-effectiveness.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"74 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00975-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
THz technology has the potential to revolutionize various fields, including high-speed wireless communication, medical imaging, and spectroscopy. One challenge facing THz technology, however, is the limited output power (on the order of microwatts) of photonic THz sources (e.g., uni-traveling-carrier photodiode). Researchers are therefore exploring THz beam steering techniques to maximize their power effectiveness. To this end, we propose a photonic THz beam steering method that utilizes fiber chromatic dispersion, eliminating the need for energy-consuming active electronics. This paper explains its basic operating principle, fabrication and performance analysis of the associated THz array antenna, and demonstrates the feasibility of achieving a 300 GHz beam steering within 10\(^\circ \) by means of dispersion-varied polarization-maintaining fibers. In conclusion, the present scheme can greatly enhance the power efficiency of photonic THz sources, and enable the potential advantages of seamless integration with fiber-optic networks, including reduced complexity, simplified operation, low power consumption, and cost-effectiveness.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.