Mixing time of random walk on dynamical random cluster

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Andrea Lelli, Alexandre Stauffer
{"title":"Mixing time of random walk on dynamical random cluster","authors":"Andrea Lelli, Alexandre Stauffer","doi":"10.1007/s00440-024-01262-8","DOIUrl":null,"url":null,"abstract":"<p>We study the mixing time of a random walker who moves inside a dynamical random cluster model on the <i>d</i>-dimensional torus of side-length <i>n</i>. In this model, edges switch at rate <span>\\(\\mu \\)</span> between <i>open</i> and <i>closed</i>, following a Glauber dynamics for the random cluster model with parameters <i>p</i>, <i>q</i>. At the same time, the walker jumps at rate 1 as a simple random walk on the torus, but is only allowed to traverse open edges. We show that for small enough <i>p</i> the mixing time of the random walker is of order <span>\\(n^2/\\mu \\)</span>. In our proof we construct a non-Markovian coupling through a multi-scale analysis of the environment, which we believe could be more widely applicable.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01262-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the mixing time of a random walker who moves inside a dynamical random cluster model on the d-dimensional torus of side-length n. In this model, edges switch at rate \(\mu \) between open and closed, following a Glauber dynamics for the random cluster model with parameters pq. At the same time, the walker jumps at rate 1 as a simple random walk on the torus, but is only allowed to traverse open edges. We show that for small enough p the mixing time of the random walker is of order \(n^2/\mu \). In our proof we construct a non-Markovian coupling through a multi-scale analysis of the environment, which we believe could be more widely applicable.

Abstract Image

动态随机群上随机行走的混合时间
在这个模型中,边以 \(\mu \) 的速率在开放边和封闭边之间切换,遵循参数为 p, q 的随机簇模型的格劳伯动力学。同时,行走者以 1 的速率在环上像简单随机行走一样跳跃,但只允许穿越开放边。我们证明,对于足够小的 p,随机漫步者的混合时间为 \(n^2/\mu \)。在我们的证明中,我们通过对环境的多尺度分析,构建了一个非马尔可夫耦合,我们相信它可以更广泛地应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信