COUNTING GEOMETRIC BRANCHES VIA THE FROBENIUS MAP AND F-NILPOTENT SINGULARITIES

IF 0.8 2区 数学 Q2 MATHEMATICS
HAILONG DAO, KYLE MADDOX, VAIBHAV PANDEY
{"title":"COUNTING GEOMETRIC BRANCHES VIA THE FROBENIUS MAP AND F-NILPOTENT SINGULARITIES","authors":"HAILONG DAO, KYLE MADDOX, VAIBHAV PANDEY","doi":"10.1017/nmj.2024.4","DOIUrl":null,"url":null,"abstract":"We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes <jats:italic>F</jats:italic>-nilpotent curves. Further, we show that a reduced, local <jats:italic>F</jats:italic>-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to <jats:italic>F</jats:italic>-nilpotent affine semigroup rings.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"134 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give an explicit formula to count the number of geometric branches of a curve in positive characteristic using the theory of tight closure. This formula readily shows that the property of having a single geometric branch characterizes F-nilpotent curves. Further, we show that a reduced, local F-nilpotent ring has a single geometric branch; in particular, it is a domain. Finally, we study inequalities of Frobenius test exponents along purely inseparable ring extensions with applications to F-nilpotent affine semigroup rings.
通过弗罗本尼斯图和 f-nilpotent 奇点计算几何分支
我们给出了一个明确的公式,利用紧闭理论计算正特征曲线的几何分支数。这个公式很容易说明,具有单一几何分支的特性是 F-nilpotent 曲线的特征。此外,我们还证明了一个还原的局部 F-nilpotent 环具有单一几何分支;特别是,它是一个域。最后,我们研究了沿纯不可分割环扩展的弗罗贝尼斯检验指数的不等式,并将其应用于 F-nilpotent 仿射半群环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信