NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC

IF 0.8 2区 数学 Q2 MATHEMATICS
ZHENG XU
{"title":"NOTE ON THE THREE-DIMENSIONAL LOG CANONICAL ABUNDANCE IN CHARACTERISTIC","authors":"ZHENG XU","doi":"10.1017/nmj.2024.3","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the nonvanishing and some special cases of the abundance for log canonical threefold pairs over an algebraically closed field <jats:italic>k</jats:italic> of characteristic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline2.png\" /> <jats:tex-math> $p&gt; 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More precisely, we prove that if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline3.png\" /> <jats:tex-math> $(X,B)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a projective log canonical threefold pair over <jats:italic>k</jats:italic> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline4.png\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pseudo-effective, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline5.png\" /> <jats:tex-math> $\\kappa (K_{X}+B)\\geq 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline6.png\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nef and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline7.png\" /> <jats:tex-math> $\\kappa (K_{X}+B)\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline8.png\" /> <jats:tex-math> $K_{X}+B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is semi-ample. As applications, we show that the log canonical rings of projective log canonical threefold pairs over <jats:italic>k</jats:italic> are finitely generated and the abundance holds when the nef dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline9.png\" /> <jats:tex-math> $n(K_{X}+B)\\leq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or when the Albanese map <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000035_inline10.png\" /> <jats:tex-math> $a_{X}:X\\to \\mathrm {Alb}(X)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is nontrivial. Moreover, we prove that the abundance for klt threefold pairs over <jats:italic>k</jats:italic> implies the abundance for log canonical threefold pairs over <jats:italic>k</jats:italic>.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"49 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the nonvanishing and some special cases of the abundance for log canonical threefold pairs over an algebraically closed field k of characteristic $p> 3$ . More precisely, we prove that if $(X,B)$ be a projective log canonical threefold pair over k and $K_{X}+B$ is pseudo-effective, then $\kappa (K_{X}+B)\geq 0$ , and if $K_{X}+B$ is nef and $\kappa (K_{X}+B)\geq 1$ , then $K_{X}+B$ is semi-ample. As applications, we show that the log canonical rings of projective log canonical threefold pairs over k are finitely generated and the abundance holds when the nef dimension $n(K_{X}+B)\leq 2$ or when the Albanese map $a_{X}:X\to \mathrm {Alb}(X)$ is nontrivial. Moreover, we prove that the abundance for klt threefold pairs over k implies the abundance for log canonical threefold pairs over k.
三维对数丰度特征注释
在本文中,我们证明了在特征为 $p> 3$ 的代数闭域 k 上的 log canonical threefold 对的丰度的不消失性和一些特例。更准确地说,我们证明了如果 $(X,B)$ 是 k 上的投影对数典型三折对,并且 $K_{X}+B$ 是伪有效的,那么 $\kappa (K_{X}+B)\geq 0$ ,如果 $K_{X}+B$ 是新有效的,并且 $\kappa (K_{X}+B)\geq 1$ ,那么 $K_{X}+B$ 是半范例。作为应用,我们证明了在 k 上的投影对数对数对数三重环是有限生成的,并且当 nef 维度 $n(K_{X}+B)\leq 2$ 或 Albanese 映射 $a_{X}:X\to \mathrm {Alb}(X)$ 是非微观时,丰度成立。此外,我们还证明了 k 上 klt 三重对的丰度意味着 k 上 log canonical 三重对的丰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信