Resource Scheduling in URLLC and eMBB Coexistence Based on Dynamic Selection Numerology

Lei Wang, Sijie Tao, Lindong Zhao, Dengyou Zhou, Zhe Liu, Yanbing Sun
{"title":"Resource Scheduling in URLLC and eMBB Coexistence Based on Dynamic Selection Numerology","authors":"Lei Wang, Sijie Tao, Lindong Zhao, Dengyou Zhou, Zhe Liu, Yanbing Sun","doi":"10.1155/2024/9480388","DOIUrl":null,"url":null,"abstract":"This paper focuses on the resource allocation problem of multiplexing two different service scenarios, enhanced mobile broadband (eMBB) and ultrareliable low latency (URLLC) in 5G New Radio, based on dynamic numerology structure, mini-time slot scheduling, and puncturing to achieve optimal resource allocation. To obtain the optimal channel resource allocation under URLLC user constraints, this paper establishes a relevant channel model divided into two convex optimization problems: (a) eMBB resource allocation and (b) URLLC scheduling. We also determine the numerology values at the beginning of each time slot with the help of deep reinforcement learning to achieve flexible resource scheduling. The proposed algorithm is verified in simulation software, and the simulation results show that the dynamic selection of numerologies proposed in this paper can better improve the data transmission rate of eMBB users and reduce the latency of URLLC services compared with the fixed numerology scheme for the same URLLC packet arrival, while the reasonable resource allocation ensures the reliability of URLLC and eMBB communication.","PeriodicalId":501499,"journal":{"name":"Wireless Communications and Mobile Computing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9480388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the resource allocation problem of multiplexing two different service scenarios, enhanced mobile broadband (eMBB) and ultrareliable low latency (URLLC) in 5G New Radio, based on dynamic numerology structure, mini-time slot scheduling, and puncturing to achieve optimal resource allocation. To obtain the optimal channel resource allocation under URLLC user constraints, this paper establishes a relevant channel model divided into two convex optimization problems: (a) eMBB resource allocation and (b) URLLC scheduling. We also determine the numerology values at the beginning of each time slot with the help of deep reinforcement learning to achieve flexible resource scheduling. The proposed algorithm is verified in simulation software, and the simulation results show that the dynamic selection of numerologies proposed in this paper can better improve the data transmission rate of eMBB users and reduce the latency of URLLC services compared with the fixed numerology scheme for the same URLLC packet arrival, while the reasonable resource allocation ensures the reliability of URLLC and eMBB communication.
基于动态选择数值法的 URLLC 和 eMBB 共存中的资源调度
本文基于动态数字结构、小时隙调度和穿刺技术,重点研究了5G新无线电中增强型移动宽带(eMBB)和超可靠低时延(URLLC)两种不同业务场景复用的资源分配问题,以实现最优资源分配。为了获得 URLLC 用户约束条件下的最优信道资源分配,本文建立了一个相关的信道模型,将其分为两个凸优化问题:(a)eMBB 资源分配和(b)URLLC 调度。我们还借助深度强化学习来确定每个时隙开始时的数值,从而实现灵活的资源调度。本文提出的算法在仿真软件中进行了验证,仿真结果表明,在相同的 URLLC 数据包到达率下,本文提出的动态数值选择方案与固定数值方案相比,能更好地提高 eMBB 用户的数据传输速率,降低 URLLC 服务的延迟,同时合理的资源分配保证了 URLLC 和 eMBB 通信的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信